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Abstract

This paper introduces a specificity-controlled video cap-
tioning (SCVC) model that generates one-sentence descrip-
tions of open-domain videos at a level of granularity speci-
fied by the user. Previous video captioning models produce
captions at inconsistent levels of specificity and cannot ex-
plicitly control the amount of detail contained in a caption.
In contrast, SCVC produces captions conditioned on both a
video and a target specificity level. The SCVC model uses
a convolutional neural network (CNN) to first extract vi-
sual features from video frames then an attention-based se-
quence to sequence model (Seq2Seq-Attn) to generate cap-
tions. Feature-wise linear modulation (FiLM) layers are in-
serted in Seq2Seq-Attn to control the specificity level of the
generated captions.

We design an automatic evaluate scheme specifically for
SCVC tasks to measure the caption and specificity fidelity
of generated captions. A comparison between SCVC and
ablated models show significant improvement in specificity
correctness while maintaining caption correctness. We also
qualitatively evaluate the efficacy of the SCVC model and
observe desired levels of specificity in the produced captions
while maintaining the caption quality of the baseline video
captioning model that does not support specificity control.

1. Introduction

Real-world open-domain videos contain hierarchical and
compositional structures in the spatial and temporal dimen-
sions. Reasoning about streams of complex visual input
and generating coarse- or fine-grained descriptions in a con-
trolled manner lie at the intersection of computer vision and
natural language processing. Automatically generating cap-
tions of a video at different levels of granularity requires
detection and tracking of objects in a dynamic scene and
extract compact representations of spatio-temporal informa-
tion to produce descriptive captions.

There are great potentials in the real-world applications
of specificity-controlled video captioning (SCVC). In a
human-robot interaction scenario, with the help of SCVC,
robots can present descriptions of its perceptual data with a
controlled level of detail to humans. For example, a robot

Figure 1: A comparison between SCVC (ours) and Seq2Seq.
Ground Truth Caption : a man is playing a guitar
Seq2Seq Video Caption : a man is playing a guitar
SCVC at Specificity 1 : a man playing guitar
SCVC at Specificity 2 : a man is playing a guitar
SCVC at Specificity 3 : a man seated is playing the guitar and
singing a song

docent can produce explanations based on museum visitors’
comfort levels [12]. SCVC can also be used to provide
video classification or narration to visually impaired users,
and the users can control the amount of information they
receive.

Previous video captioning models lack of the ability to
control the amount of detail contained in a caption. They
either generate descriptions at an inconsistent level of speci-
ficity [20], or produce dense captions describing all major
events occurring in a video [10][24], which may not be de-
sirable if the user only needs a brief one-sentence summary
of the video.

This paper introduces a specificity-controlled video cap-
tioning model that generates a one-sentence description of
an open-domain video at a level of granularity specified by
the user. We consider video captioning as a translation task
from a source video to a target caption, analogous to ma-
chine translation (MT), and build SCVC on an encoder-
decoder framework [6] specialized in MT tasks. The SCVC
model uses a convolutional neural network (CNN) VGG 16
[19] to first extract visual features from video frames then a
sequence to sequence model with attention (Seq2Seq-Attn)
[1] to generate captions. Feature-wise linear modulation
(FiLM) [15] layers are inserted in the decoder of Seq2Seq-
Attn to condition the generated caption on a desired speci-
ficity level. We draw insights from [25] and use some statis-
tics of a text corpus to compute the specificity level of a
caption. Thus the training set consists of tuples of video,
caption and caption specificity.
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We quantitatively and qualitatively evaluate the efficacy
of the SCVC model and show that the produced captions
have the desired levels of specificity while maintain the cap-
tion quality of the baseline video captioning model that does
not support specificity control.

The contributions of this paper are:

1. A domain agnostic Specificity-Controlled Video Cap-
tioning (SCVC) model that generates one-sentence de-
scriptions of videos at a level of granularity specified
by the user.

2. Two novel evaluation metrics designed for SCVC tasks
that measure the caption and specificity fidelity of the
generated captions.

2. Related Work
In this section, we summarize prior arts in video caption-

ing, language specificity, neural network conditioning tech-
niques, show some limitations of related work and highlight
the novelty of our work.

2.1. Video Captioning

Different from an image, a video consists of a sequence
of temporally dependent frames. Thus an effective video
captioning model should capture both the spatial structure
contained in a single frame and the temporal relations of
scenes among frames.

[20] trains an end-to-end model that first extracts fea-
ture vectors from video frames using a convolutional neural
network (CNN), then feeds the feature vectors into a multi-
layer LSTM model to generate a caption.

To better capture the temporal dependencies among
video frames, [3] adds a boundary-detecting gate in GRU
that outputs only hidden states summarizing video sub-
streams between detected boundaries. [10] introduces a
model consisting of a CNN for event proposal and an LSTM
for event description generation to capture and describe ma-
jor events occurring in a video.

To improve the quality of single-sentence captions, [23]
captures the local and global temporal structures of a video
by using 3D convectional neural networks and Bahdanau
attention in a CNN-RNN model.

These models do not explicitly control the amount of de-
tail contained in the generated captions. Thus the produced
captions may have inconsistent levels of specificity or more
details than what a user needs.

In the limited cooking domain, [16] can describe videos
in both single sentences and dense captions at the expense
of model complexity. Since this approach relies on using
hand-centric features for object recognition, it would be
hard to generalize it to other domains, where videos do not
always contain both human hands. To the best of our knowl-
edge, our work is the first to use a single end-to-end model

for open-domain video captioning with explicit specificity
control.

2.2. Language Specificity

Language specificity defines the amount of information
contained in a sentence.

In a conversational setting, [25] acquires the specificity
of a sentence by computing the normalized maximum of
inverse word frequencies from the training set and utilizes
it as a specificity measure to guide the response generation
in the decoder of a Seq2Seq model.

In addition to using some statistics of the text corpus,
sentence specificity can also be captured from a text corpus
by using a regression model as in [7].

We build upon [25] and define a metric that utilizes
sentence length and normalized maximum inverse word
frequencies to compute the specificity value of a caption,
where word frequencies are acquired from a corpus much
larger than the training set to avoid dataset bias.

In a video captioning task, the higher the specificity
value is, the more detailed information a caption contains.
For example, “A girl is running on a treadmill” is a more
specific description than “A person is exercising”

2.3. Specificity Control by Conditional Neural Net-
works

[15] proposes Feature-wise Linear Modulation (FiLM)
to condition arbitrary layers of a neural network by apply-
ing an affine transformation to its feature maps, where the
scaling and translation parameters are generated from some
auxiliary input (e.g. the query question in a visual ques-
tion answering setting). Although FiLM is developed to im-
prove the performance of structured, multi-step visual rea-
soning tasks, it has been adapted and proved successful in
many other computer vision and natural language process-
ing models [2][8].

To control a certain property of the generated text in
neural machine translation, simple concatenation-based ap-
proaches work well. [18] controls the politeness of the
translation by appending a binary token at the end of the
source sentence. [9] appends a token at the beginning of the
source sentence to select the target language of the transla-
tion from a set of candidate languages.

We examine some simple concatenation-based ap-
proaches for our specificity-controlled video captioning
task, but they do not work well. We suspect video caption-
ing datasets are multi-modal (i.e. visual and textual), and
it is difficult to influence the model output by appending a
low dimensional specificity token to a base feature vector of
hundreds or thousands dimensions.
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3. Method
In this section, we explain in details the metric used to

compute specificity level of a caption, the SCVC model and
the loss function used for training.

3.1. Specificity Metric

To compute the specificity level of a caption, we first
compute a specificity value, represented by a real number
ranging from 0 to 1 (inclusive), then discretize the speci-
ficity values of captions per video.

The specificity value of a caption c in a text corpus C
is defined as the product of the length and the normalized
maximum inverse word frequency (NMIWF) of the caption.
We use NMIWF proposed in [25] but multiple it with the
sentence length. Sentence length is significant in the speci-
ficity computation because longer sentences normally con-
tain more information. If a high specificity value is targeted,
the proposed specificity metric encourages SCVC to gener-
ate long captions that contains more less frequent words.

Specificity(c) = len(c)×NMIWF (c), for c ∈ C (1)

MIWF (c) = max{ 1

freq(w)
| ∀w ∈ c} (2)

NMIWF (c) =

MIWF (c)−min{MIWF (c′)|∀c′ ∈ C}
max{MIWF (c′)|∀c′ ∈ C} −min{MIWF (c′)|∀c′ ∈ C}

(3)

Instead of computing specificity value on the training set
as in [25], we infer the word frequencies from the Google
Books Ngram Corpus [11], which contains 155 billion
words, to mitigate the dataset bias problem that occurs on a
much smaller corpus.

To discretize specificity values, we rank captions per
video by their specificity values and equally divide cap-
tions into three levels, low, medium and high. The higher
the specificity value is, the more details a caption contains.
We decide to rank captions and discretize their specificity
values per video instead of over the entire caption corpus
because some specific words are used more frequently in
videos of certain domains. For example, the words cook,
stir and fry are normally used in cooking videos but not in
sports videos. In Section 3.2, we show that the proposed
metric captures various levels of specificity present in the
dataset.

3.2. Specificity Metric Validation

We show that the variation of caption specificity present
in MSVD can be captured by the proposed specificity met-
ric, and the metric matches closely to human intuition of
language specificity.

We randomly select 20 videos from the validation set.
Then for each video, we randomly sample a caption of each
specificity level measured by the proposed specificity met-
ric. We manually label each of the 3 sampled caption as
low, medium or high. Finally, we compare the results of
manual labelled specificity level with that computed by the
specificity metric and find that 49/60 ≈ 81.7% captions re-
ceive the same label. All the inconsistently labeled captions
are from 5 out of 20 videos.

3.3. Specificity-Controlled Video Captioning
(SCVC)

We build our Specificity-Controlled Video Captioning
(SCVC) Model (Figure 2) on a Attention-based Sequence
to Sequence (Seq2Seq-Attn) model. In addition to the in-
put video, the SCVC model takes in a target specificity
level dictating the amount of information the output caption
needs to contain.

We randomly sample 80 frames from the input video
then feed them in the order of occurrence into a VGG 16,
that is pretrained on the ImageNet. The output of the logit
layer (4096 dimensional vector) is used as the visual feature
representation for each frame. Then this 2D visual embed-
ding of the given video (80 × 4096) is fed into the encoder
of the FiLMed Seq2Seq-Attn to produce a compact repre-
sentation used as the input to the decoder.

Seq2Seq-Attn is a bidirectional encoder-decoder net-
work consists of gated recurrent units (GRU) [5] and Bah-
danau attention mechanism [1]. The size of the hidden units
is 512.

FiLM works by first generating the scaling and transla-
tion parameters of a set of affine transformations then ap-
plying them to the input of each decoder cell. The second
input to SCVC, the target specificity level, is used as the
auxiliary input to the FiLM generator that produces the pa-
rameters. The decoder generates a one-sentence caption de-
scribing the input video with the amount of detail specified
by the target specificity level.

3.4. Loss Function

During training, we use a separately trained classifier, a
feed-forward network with a GRU and a linear layer of size
512, to predict the specificity level of the generated cap-
tion. We then use the deviation of the predicted specificity
level from the target specificity level as a loss signal, named
specificity loss, to enforce the FiLM generator to generate
affine transformation parameters that help produce captions
close to the target specificity level. The specificity classifier
achieves 81% accuracy on the validation set after training
5000 epochs on the training set.

The loss function consists of two parts, caption loss and
specificity loss, which are both cross entropy loss between
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Figure 2: The Specificity-Controlled Video Captioning Model consists of a pretrained vision network (in blue) to extract visual features
from video frames, an encoder-decoder network (in green) for caption generation and a conditional mechanism (in yellow) to control the
specificity level of produced captions. Then input and output of the model are in orange. The specificity classifier and its output that are
used for training are in pink.

the ground truth and predicted values.

L(c, ĉ, s, ŝ) = Lcap(c, ĉ) + αLspec(s, ŝ) (4)

α is a hyperparameter which we set to be 10 since we ob-
serve that at the beginning of the training process, the Lcap
is about 10 times larger than Lspec, and we would like the
loss function to penalize SCVC for generating captions at
incorrect specificity levels as much as inaccurate captions.

4. Microsoft Video Captioning Dataset
(MSVD)

We use a standard video captioning dataset, Microsoft
Video Captioning Dataset (MSVD) [4]. Each video is anno-
tated with a set of one-sentence captions of varying speci-
ficity levels. In the following, we provide some statistics
of this dataset and prove its validity for the specificity-
controlled video captioning task.

4.1. Statistics

MSVD contains 1970 videos ranging from 41 to 1799
frames. The videos are divided into training, validation and
test sets with 1500, 100 and 370 videos and their corre-
sponding captions, respectively.

The number of captions per video ranges from 18 to 81
with a median of 40 captions. The caption length varies

from 1 to 141 words with a median of 8. The vocabulary
contains 13,394 unique words.

For each caption, we compute a specificity level. To-
gether, MSVD contains 80,839 video-caption-specificity
triplets, and 62,060 (76.7%) of them are unique.

4.2. Dataset Validation

To perform specificity-controlled video captioning, the
dataset is required to contain captions of various levels of
specificity.

We show that MSVD has this property by plotting the
histogram of the log specificity values of captions in the
text corpus. We observe that the histogram has the shape a
normal distribution with mean specificity value at approxi-
mately 0.00673794699.

We plot the word frequency histograms of the 200 to
3000 most frequent words in sentences at each specificity
level (bottom row of Figure 4. We see distinct patterns of
words usage by sentences that are at low, medium and high
specificity level.

5. Experiments and Results

In this section, we first validate baseline VC which we
build SCVC on, then show experiment results that demon-
strate the efficacy of the SCVC model and compare it with
3 ablation models and an baseline video captioning model.
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Figure 3: The histogram of the log specificity values of captions
in the text corpus

Figure 4: Plots from top to bottom are word frequencies of all
sentences and sentences at low, medium and high specificity lev-
els. Figure in the top row are word frequencies of top 200 most
frequent words and words after the 3000th most frequent word.
Figure in bottom row are the words frequencies of 200-3000 most
frequent words.

5.1. Baseline Video Captioning Model

Our SCVC model is built on top of a baseline Seq2Seq-
Attn video captioning model. We prove that the baseline
model produces captions conditioned on the input videos
instead of memorizing word usage of the caption corpus.
We feed random frames sampled from a normal distribution
into Seq2Seq-Attn and observe that the output captions are

random and have low evaluation scores (BLEU 4=0.1677,
METEOR=0.0839, CIDEr=0.0622, ROUGE L=0.4531).

5.2. Quantitative Evaluation of Caption and Speci-
ficity Fidelity

We train the SCVC model using the training set of
MSVD for 6000 epochs and validate it every 100 epochs.
The total, specificity and caption loss curves for the train-
ing and validation set are in Figure 5.

Because the task of specificity-controlled video caption-
ing (SCVC) is different from conventional video caption-
ing (VC), the metrics used to evaluate VC are not suit-
able for SCVC. VC evaluation metrics (e.g. BLEU, ME-
TEOR, CIDEr, ROUGE L) measure caption correctness but
not specificity correctness of the generated captions. Thus
we design two metrics specifically for SCVC and compare
the performance of SCVC with that of a baseline model us-
ing SCVC and VC metrics.

5.2.1 Specificity-Controlled Video Captioning Evalua-
tion Metrics

We use mean average precision (mAP) to define two SCVC
evaluation metrics to measure the semantics and specificity
fidelity of the generated captions.

For every video in the validation set, we randomly sam-
ple an equal number of captions from the corpus as the
number of the ground truth captions. Thus for each video,
we have a set of good (ground truth) and bad (randomly
sampled) captions. We then use teacher forcing to produce
video captions and compute their perplexities of a trained
model. For an effective SCVC model, the two metrics
would rank the captions generated from the good caption
set higher than that from the bad caption set in terms of se-
mantics and specificity correctness.

We compute an average precision (AP) score over the set
of generated captions for individual video, then average the
AP scores of all videos to get a mAP measure of the model.
The scikit-learn AP function has two inputs, a list of binary
labels and a list of scores [14]. We use perplexities of the
generated captions as the scores and compute binary labels
differently to measure caption and specificity correctness.

To measure semantic correctness, we define the binary
label of a caption to be 1 if it is generated from the ground
truth caption and 0 otherwise. For specificity correctness,
binary label represents whether the specificity level of gen-
erated captions equals the target specificity level.

We compare the performance of the SCVC model with 3
ablation models, each of which is trained with an identical
target specificity level, 1, 2 and 3 respectively. The abla-
tion models represent an elimination of specificity control
used in SCVC. The results are show in Table 1. As shown,
the SCVC model trained with ground truth specificity level,
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computed by the metric introduced in Section 3.1, outper-
forms the ablation models while maintaining the same cap-
tion fidelity.

5.2.2 Video Captioning Evaluation Metrics

Since the goal of SCVC is to generate captions of various
specificity levels while matching the caption quality of the
baseline video captioning model, we show that after ablat-
ing the specificity input, SCVC generates descriptions as
accurate as the Seq2Seq-Attn video captioning model.

The results of caption quality by two models are compa-
rable as shown in Table 2.

5.3. Qualitative Evaluation

For each validation video, we ask the trained SCVC
model to generate three captions, one at each specificity
level, low, medium and high.

We inspect the generated captions and find a consistent
trend that the lengths of captions increase as we increase the
target specificity level, and more specific words usually oc-
cur in sentences with higher specific levels. A comparison
of captions generated by specificity-controlled video cap-
tion and baseline Seq2Seq-Attn video caption models are
shown in Table ?? .

We observe 8 out of 100 examples in the validation set
as the target specificity level increases, the captions gen-
erated by SCVC become wrong, which might indicate the
SCVC sometimes focus too much on getting the right speci-
ficity than correct caption in high specificity. In one case, as
target specificity level increases, SCVC adds more details,
which might not be correct, to the correct low specificity
level captions. In some other cases, as target specificity lev-
els increase, SCVC decides uses rare words and generates a
longer sentence that is wrong or partially correct.

In contrast, in some cases, as target specificity levels in-
crease, parts of the sentences generated by SCVC start to
become right, which means that specificity control could
sometimes help improve the quality of produced caption

When the three captions generated by SCVC for a video
are completely wrong, they are often still at different levels
of granularity, which suggests the conditional network tries
to generate more complicated captions as we increase the
target specificity level.

5.4. Computing Resources

We used 2 Nvidia GeForce 2080Ti to train and validate
all the aforementioned models.

6. Conclusion and Future Work
This paper describes a Specificity-Controlled Video

Captioning (SCVC) model that generates captions of an
open-domain video at a level of granularity specified by the

Figure 5: The total, specificity and caption loss curves (from left
to right) of true-spec. The blue curves represent training loss and
the red curves are for validation loss.

user. SCVC influences the output of a Seq2Seq-Atten lan-
guage model by adding conditional layers in its decoder.

One limitation of current approach is that as the target
specificity level increases, SCVC would try to add in more
details whihc might not be correct to generated captions. A
significant performance boost might be achieved by condi-
tion the visual model (e.g. 3D ResNet) on the target speci-
ficity input, so it produces visual attentions focusing on re-
gions of video frames that is most useful for specificity-
conditioned language generation.

Next we would like to train SCVC end-to-end and evalu-
ate its performance on larger datasets, like MSR-VTT-2017
[22][13], VATEX [21] and movie descriptions [17].
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