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Abstract

Deploying robots in real-world domains, such as households and flexible man-
ufacturing lines, requires the robots to be taskable on demand. Linear temporal
logic (LTL) is a widely-used specification language with a compositional gram-
mar that naturally induces commonalities across tasks. However, the majority
of prior research on reinforcement learning with LTL specifications treats every
new formula independently. We propose LTL-Transfer, a novel algorithm that
enables subpolicy reuse across tasks by segmenting policies for training tasks into
portable transition-centric skills capable of satisfying a wide array of unseen LTL
specifications while respecting safety-critical constraints. Our experiments in a
Minecraft-inspired domain demonstrate the capability of LTL-Transfer to satisfy
over 90% of 500 unseen tasks while training on only 50 task specifications and
never violating a safety constraint. We also deployed LTL-Transfer on a quadruped
mobile manipulator in a household environment to show its ability to transfer to
many fetch and delivery tasks in a zero-shot fashion.

(a) pick up book (b) deliver book (c) pick up juice bottle (d) deliver juice bottle

Figure 1: The robot is executing 4 transition-centric options sequencially, each of which is transferred
from a training task. They are composed together to solve a novel task, F(book ∧ F(deska ∧
F(juice ∧ Fdeska))), i.e. fetch and deliver a book and a bottle of juice to the user.

1 Introduction

A key requirement for deploying autonomous agents in many real-world domains is the ability to
perform multiple novel potential tasks on demand. These tasks typically share components like
the objects and the trajectory segments involved, which creates the opportunity to reuse knowledge
across tasks [24]. For example, a service robot on the factory floor might have to fetch the same set
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of components but in different orders depending on the product being assembled, in which case it
should only need to learn to fetch a component once.

Linear temporal logic (LTL) [21] is becoming a popular means of specifying an objective for a
reinforcement learning agent [17, 25, 6]. Its compositional grammar reflects the compositional nature
of most tasks. However, most prior approaches to reinforcement learning for LTL specifications
restart learning from scratch for each LTL formula. We propose LTL-Transfer, a novel algorithm that
exploits the compositionality inherent to LTL task specifications to enable an agent to maximally
reuse policies learned in prior LTL formulas to satisfy new, unseen specifications without additional
training. For example, a robot that has learned to fetch a set of components on the factory floor should
be able to fetch it in any order. LTL-Transfer also ensures that transferred subpolicies do not violate
any safety constraints.

We demonstrated the efficacy of LTL-Transfer in a Minecraft-inspired domain, where the agent can
complete over 90% of 500 new task specifications by training on only 50 specifications. Further, we
demonstrate that it is possible to transfer satisfying policies with as few as 5 training specifications for
certain classes of LTL formulas. We then deployed LTL-Transfer on a quadruped mobile manipulator
to show its zero-shot transfer ability in a real-world household environment when performing with
fetch and delivery tasks.

2 Preliminaries

Linear temporal logic (LTL) for task specification: LTL is a promising alternative to a numerical
reward function as a means of expressing task specifications. An LTL formula ϕ is a boolean
function that determines whether a given trajectory has satisfied the objective expressed by the
formula. Littman et al. [17] argue that such task specifications are more natural than numerical reward
functions, and they have subsequently been used as a target language for acquiring task specifications
in several settings, including from natural language [20] and learning from demonstration [22].
Formally, an LTL formula is interpreted over traces of Boolean propositions over discrete time, and is
defined through the following recursive syntax:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | ϕ1 U ϕ2 (1)

Here p represents an atomic proposition, mapping a state to a boolean value; ϕ, ϕ1, ϕ2 are any
valid LTL formulas. The operator X (next) is used to define a property Xϕ that holds if ϕ holds
at the next time step. The binary operator U (until) is used to specify ordering constraints. The
formula, ϕ1 U ϕ2, holds if ϕ2 holds at time point in the future, and ϕ1 holds until ϕ2 first holds.
The operators ¬ (not), and ∨ (or) are identical to propositional logic operators. We also utilize the
following abbreviated operators: ∧ (and), F (eventually), and G (globally or always). Fϕ specifies
that the formula ϕ must hold at least once in the future, while Gϕ specifies that ϕ must always hold
in the future. Consider the Minecraft map depicted in Figure 2. The task of collecting both wood and
axe is represented by the LTL formula Faxe ∧ Fwood. The task of collecting wood after collecting
axe is represented by the formula F(axe ∧ Fwood). Similarly, the task of collecting wood only
once axe has been collected is represented by the formula Fwood ∧ ¬woodU axe

Every LTL formula can be represented as a Büchi automaton [28, 7] interpreted over an infinite
trace of truth values of the propositions used to construct the formula, thus providing an automated
translation of a specification into a transition-based representation. We restrict ourselves to the
co-safe [14, 18] fragment of LTL that consists of formulas that can be verified by a finite length trace,
thus making it ideal for episodic tasks. Camacho et al. [6] showed that each co-safe LTL formula
can be translated into an equivalent reward machine [9, 8]Mϕ = 〈Qϕ, q0,ϕ,Qterm,ϕ, ϕ, Tϕ, Rϕ〉;
where Qϕ is the finite set of states, q0,ϕ is the initial state, Qterm,ϕ is the set of terminal states;
Tϕ : Qϕ × 2P → Qϕ is the deterministic transition function; and Rϕ : Qϕ → R represents the
reward accumulated by entering a given state. LTL-Transfer, our proposed algorithm for transferring
learned policies to novel LTL specifications, is compatible with all algorithms that generate policies
by solving a product MDP of the reward machineMϕ and the task environment.

Options framework: Sutton et al. [23] introduced a framework for incorporating temporally-
extended actions, called options, into reinforcement learning. An option o = 〈I, β, π〉 is defined using
the initiation set I, which determines the states where the option can be executed; the termination
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condition β, which determines when option execution ends; and the option policy π. We utilize the
options framework to define the task-agnostic skills learned by LTL-Transfer.

3 Related work

Most approaches aimed at extending the reinforcement learning paradigm to temporal tasks rely on
the automaton equivalent of the LTL formula to augment the state space and generate an equivalent
product MDP. Q-learning for reward machines (Q-RM) [6, 9, 8], geometric-LTL (G-LTL) [17],
LPOPL [25] are examples of approaches that extend the environment state-space with the automaton
equivalent to the LTL specification. Notably, Jothimurugan et al. [11] proposed DiRL, an algorithm
that interleaves graph-based planning on the automaton with hierarchical reinforcement learning to
bias exploration towards trajectories that lead to the successful completion of the LTL specification.
However, while these approaches exploit the compositional structure of LTL to speed up learning,
they do not exploit the compositionality to transfer to novel task specifications. The policy to satisfy
a novel LTL formula must be learned from scratch.

A common approach towards generalization in a temporal task setting has been to learn independent
policies for each subtask [15, 16, 3, 2] an agent might perform in the environment. When given a
new specification, the agent sequentially composes these policies in an admissible order. Consider
the Minecraft-inspired grid world depicted in Figure 2 containing wood and axe objects. The
subtask-based approaches would train policies to complete subtasks involving reaching each of these
objects. In the case of being tasked with the specification ϕtest = Fwood ∧ (¬woodU axe) (i.e.
collect wood, but do not collect wood until axe is collected), agents trained with the subtask-based
approaches would violate the ordering constraint by reaching axe through the grid cells containing
wood. These approaches rely on additional fine-tuning to correctly satisfy the target task. We propose
a general framework for transferring learned policies to novel specifications in a zero-shot setting
while preserving the ability to not violate safety constraints.

Our approach draws inspiration from prior works on learning portable skills in Markov domains
[12, 10, 4, 5]. These approaches rely on learning a task-agnostic representation of preconditions,
constraints, and effects of a skill based on the options framework [23]. We apply this paradigm
towards learning portable skills requisite for satisfying temporal specifications.

Kuo et al. [13] proposed learning a modular policy network by composing subnetworks for each
proposition and operators. The final policy network is created through the subnetwork modules
for a new task specification. Vaezipoor et al. [26] propose learning a latent embedding over LTL
formulas using a graph neural network to tackle novel LTL formulas. In contrast, our approach
utilizes symbolic methods to identify subpolicies best suited for transfer, thus requiring training on
orders of magnitude fewer specifications to achieve comparable results. Finally, Xu and Topcu [29]
considered transfer learning between pairs of source and target tasks, while our approach envisions
training on a collection of task specifications rather than pairs of source and target tasks.

4 Problem definition

Consider the environment map depicted in Figure 2b. Assume that the agent has trained to complete
the specifications to individually collect axe (Faxe) and wood (Fwood). Now the agent must
complete the specification F(axe ∧ F wood), i.e. first collect axe, then wood. Here the agent
should identify that sequentially composing the policies for Faxe and Fwood completes the new task
(as depicted in blue). Now consider a different test specification ϕ2 = Fwood ∧ ¬woodUaxe, i.e.
collect wood, but avoid visiting wood until axe is collected. Here the agent must realize that policy
for Faxe does not guarantee that wood is not visited. Therefore it must not start the task execution
using only these learned skills so as to not accidentally violate the ordering constraint. We develop
LTL-Transfer to generate such behavior when transferring learned policies to novel LTL tasks. We
begin by formally describing the problem setting.

We represent the environment as an MDP without the reward functionMS = 〈S,A, TS〉, where S
is the set of states, A is the set of actions, and TS : S × A × S → [0, 1] represents the transition
dynamics of the environment. We assume that the learning agent does not have access to the transition
dynamics. Further, a set P of Boolean propositions α represents the facts about the environment,
and a labeling function L : S → 2P maps the state to these Boolean propositions. These Boolean
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Figure 2: An example 5×5 map in a Minecraft-like grid world. The agent is assumed to have
trained on the two training specifications, and is expected to satisfy ϕ1 and ϕ2. Figure 1a depicts the
trajectories adopted by an agent using a subtask-based algorithm (blue for ϕ1, red for ϕ2). Figure 1b
depicts the trajectories followed by LTL-Transfer, our proposed algorithm. Note that LTL-Transfer
does not start the task execution for ϕ2, as the training task policies do not guarantee the preservation
of the ordering constraint. Figure 1c depicts the optimal trajectories for ϕ1 and ϕ2.

propositions are the compositional building blocks for defining the tasks that can be performed within
the environmentMS .

We assume that a task within the environment MS is defined by a linear temporal logic (LTL)
formula ϕ, and that the agent is trained on a set of training tasks Φtrain = {ϕ1, ϕ2, . . . , ϕn}. We
further assume that these policies were learned using a class of reinforcement learning algorithms that
operate on a product MDP composed of the environmentMS , and the automaton representing the
non-Markov LTL task specification. Q-RM [6, 9, 8], G-LTL [17], LPOPL [25] are examples of such
algorithms. LPOPL explicitly allows for sharing policies for specifications that share progression
states; therefore, as the baseline best suited for transfer in a zero-shot setting, we choose LPOPL as
our learning algorithm of choice.

LTL-Transfer operates in two stages. In the first stage, it accepts the set of training tasks Φtrain and
the learned policies, and outputs the set of task-agnostic, portable options Oe. In the second stage,
given a novel task specification ϕtest and the set of options Oe, LTL-Transfer identifies and executes
a sequence of options to satisfy ϕtest.

5 LTL-Transfer with transition-centric options

An LTL specification ϕ ∈ Φtrain to be satisfied is represented as the reward machine Mϕ =
〈Qϕ, q0,ϕ,Qterm,ϕ, ϕ, Tϕ, Rϕ〉. This specification must be satisfied by the agent operating in an
environment MS = 〈S,A, TS〉. The policy learned by LPOPL is Markov with respect to the
environment states S for a given RM state, i.e. the subpolicy to be executed in state q ∈ Qϕ,
πϕq : S → A.

An option oϕq is executed in the reward machine (RM) state q. Our insight is that each of these options
triggers a transition in the reward machine on a path that leads towards an acceptance state, and these
transitions may occur in multiple tasks. There might be multiple paths through the reward machine to
an accepting state; therefore, the target transition of an option oϕq is conditioned on the environment
state where the option execution was initiated. We propose recompiling each state-centric option into
multiple transition-centric options by partitioning the initiation set of the state-centric option based on
the transition resulting from the execution of the option policy from the starting state. Each resulting
transition-centric option will maintain the truth assignments of P to ensure self-transitions till it
achieves the truth assignments required to trigger the intended RM transition. These transition-centric
options are portable across different formulas. We describe our proposed algorithm in Section 5.1.

Given a novel task specification ϕtest 6∈ Φtrain, the agent first constructs a reward machine repre-
sentation of the specification,Mϕtest , then identifies a path through the reward machine that can be
traversed by a sequential composition of the options from the set of transition-centric options Oe. A
key feature of our transfer algorithm is that it is sound and terminating, i.e. if it returns a solution with
success, that task execution will satisfy the task specification. Further, it is guaranteed to terminate
in finite time if it does not find a sequence of options that can satisfy a given task. We describe the
details of this planning algorithm in Section 5.2.
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The key advantage of this approach is that the compilation of options can be computed offline for any
given environment, and the options can then be transferred to novel specifications. Thus learning
to satisfy a limited number of LTL specifications can help satisfy a wide gamut of unseen LTL
specifications.

5.1 Compilation of transition-centric options

The policy learned by LPOPL to satisfy a specification ϕ identifies the current reward machine state
q ∈ Qϕ the task is in and executes a Markov policy πϕq till the state of the reward machine progresses.
This subpolicy can be represented as an option, oϕq = 〈S, βeϕq,q , πϕq 〉; where the initiation set is the
entire state-space of the task environment; the option terminates when the truth assignments of the
propositions α do not satisfy the self-transition, represented by the Boolean function βe defined as
follows,

βe =

{
1, if L(s) 2 e
0, otherwise.

(2)

A transition-centric option, oe1.e2 , executes a Markov policy such that it ensures that the truth
assignments of P satisfy the self transition formula e1 at all time steps until the policy yields a truth
assignment that satisfies e2. A transition-centric option is defined by the following tuple:

oe1,e2 = 〈S, βe1 , π, e1, e2, fe2〉. (3)

Here, the initiation set represents the entire environment state-space S; the termination condition is
defined by the dissatisfaction of the termination condition as represented by βe1 ; the option executes
the Markov policy π : S → A; e1 and e2 represent the self-transition and the target edge formulas
respectively; and fe2 : S → [0, 1] represents the probability of completing the target edge e2 when
starting from s ∈ S.

Algorithm 1 describes our approach to compiling each state-centric option oϕq into a set of transition-
centric options. If E is the set of pairs of self and outgoing edge formulas from state q of the
reward machine, then executing the option’s policy πϕq results in a distribution over the outgoing
edges {eϕq,q′ : q′ is out-neighbor of q} conditioned on the environment state s ∈ S where the option
execution was initiated.

Thus the distribution feϕ
q,q′

acts as a soft segmenter of the state-space S. feϕ
q,q′

is estimated by
sampling rollouts from all possible environment states in discrete domains, or can be learnt using
sampling-based methods [4, 5] in continuous domains. Each state-centric option oq can be compiled

into a set of transition-options,
{
oeϕq,q,eϕq,q′

: q ∈ Qϕ, q′is out-neighbor of q
}

.

Algorithm 1 Compile state-centric options to transition-centric options
1: function COMPILE(MS , Φtrain,Oq) . Environment, training specifications, and the learned state-centric options
2: Oe ← ∅
3: for ϕ ∈ Φtrain do
4: Mϕ ← GENERATERM(ϕ)

5: Oϕ
q ←

{
oϕ
′

q : ϕ′ = ϕ, oϕ
′

q ∈ Oq

}
. All state-centric options associated with task ϕ

6: for oϕq = 〈S, βϕ
e1
, πϕ

q 〉 ∈ O
ϕ
q do

7: E ←
{
(eϕq,q, e

ϕ

q,q′ ) : eϕq,q is the self edge, q′ is an out-neighbor of q
}

8: for s ∈ S do
9: GenerateNr rollouts from s with πϕ

q

10: Record edge transition frequencies ns(e2) ∀ (e1, e2) ∈ E

11: feϕ
q,q′

(s)←
ns(e

ϕ
q,q′

)

Nr
∀ q′ ∈

{
q′ : q′ is an out-neighbor of q

}
12: Oq,ϕ

e ←
{
oq,ϕe = 〈S, βe

ϕ
q,q
, πϕ

q , e
ϕ
q,q, e

ϕ

q,q′ , fe
ϕ

q,q′ 〉
}

. All transition-centric options from state-centric option oϕq
13: Oe ← Oe ∪ Oq,ϕ

e

14: returnOe
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5.2 Transferring to novel task specifications

Our proposed algorithm for composing the transition-centric options in the set Oe to solve a novel
task specification ϕtest is described in Algorithm 2. Once the reward machine for the test task
specification is generated, Line 3 examines each edge of the reward machine, and identifies the
transition-centric options that can achieve the edge transition while maintaining the self transition
eϕtest

q′,q′ , where q′ is the source node of the edge; if no such option is identified, we remove this edge
from the reward machine. Line 7 identifies all paths in the reward machine from the current node to
the accepting node of the RM. Lines 8 and 9 construct a set of all available options that can potentially
achieve an outgoing transition from the current node to a node on one of the feasible paths to the goal
state.

The agent then executes the option with the highest probability of achieving the intended edge
transition determined by function f (Lines 12 and 13). Note that the termination condition for the
option, o∗e1,e2 is satisfied when either the option’s self transition condition is violated, i.e. L(s) 2 e1,
or when it progresses to a new state of the reward machineMϕ.

If the option fails to progress the reward machine, it is deleted from the set (Line 15), and the next
option is executed. If at any point, the set of executable options is empty without having reached the
accepting state q>, Algorithm 2 exits with a failure (Line 17). If the reward machine progresses to
q>, it exits with success.

Algorithm 2 Zero-shot transfer to test task ϕ∗

1: function TRANSFER(MS , ϕ∗,Oe)
2: M∗ϕ ← GENERATE_RM(ϕ∗)
3: M∗ϕ ← PRUNE(Mϕ∗ )

4: s← INITIALIZE(MS )
5: q ← q0,ϕ∗

6: while q 6= q> do . q> ∈ Qterm,ϕ∗ is the accepting state for the underlying task specification.

7: P ←
{
pi : pi = [e0, . . . eni ] are paths connecting q and q> inMϕ∗

}
8: ∀p ∈ P : Op[0] =

{
oe1,e2

: MATCHEDGE((e1, e2), (e
ϕ∗
q,q, p[0])), oe1,e2

∈ Oe

}
. Edge options for the first edge in

each path
9: O[0] =

⋃
pOp[0]

10: 〈s′, q′〉 ← 〈s, q〉
11: whileO[0] 6= ∅ and q′ = q do
12: o∗ ← argmaxoe1,e2

∈O[0]
fe2(s) . Select option most likely to complete the transition

13: 〈s′, q′〉 ← EXECUTE(π∗) . π∗ is the policy corresponding to the option
14: if q′ = q then
15: O[0] ← O[0] \ o∗ . If o∗e does not induce progression, delete it

16: if q′ = q then
17: return Failure
18: else
19: 〈s, q〉 ← 〈s′, q′〉
20: return Success

5.3 Matching transition-centric options to reward machine edges

The edge matching conditions identify whether a given transition-centric option can be applied
safely to transition along an edge of the reward machine on a feasible path. Here we propose two
edge matching conditions, constrained and relaxed, that both ensure that the task execution does
not fail due to an unsafe transition. The edge matching conditions are used to prune the reward
machine graph to contain only the edges with feasible options available (Line 3) and enumerate
feasible options from a given reward machine state (Line 8). We use a propositional model counting
approach [27] to evaluate the edge matching conditions. We propose the following two edge matching
conditions (Further details of the implementation of the edge matching conditions are provided in the
supplementary material):

Constrained Given a test specification ϕtest, where the task is in the state q, the self-transition edge
is eϕtest

q,q and the targeted edge transition is eϕtest

q,q′ , we must determine if the transition-centric option
oe1,e2 matches the required transitions. The Constrained edge matching criterion ensures that every
truth assignment that satisfies the outgoing edge of the option, e2, also satisfies the targeted transition
for the test specification eϕtest

q,q′ . Similarly, every truth assignment that satisfies the self-transition edge
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of the option e1 must also satisfy the self-transition formula eϕtest
q,q . This strict requirement reduces

the applicability of the learned options for satisfying novel specifications but ensures that the targeted
edge is always achieved.

Relaxed For the Relaxed edge matching criterion, the self edges e1 and eϕtest
q,q must share satisfying

truth assignments, so must the targeted edges e2 and eϕtest

q,q′ . However, it allows the option to have
valid truth assignments that may not satisfy the intended outward transition; yet none of those truth
assignments should trigger a transition to an unrecoverable failure state q⊥ of the reward machine.
Further, all truth assignments that terminate the option must not satisfy the self-transition condition
for the test specification. The Relaxed edge matching conditions can retrieve a greater number of
eligible options.

6 Experiments

We evaluated the LTL-Transfer algorithm in the Minecraft-inspired domains2 commonly seen in
research into compositional reinforcement learning and integration of temporal logics with reinforce-
ment learning [2, 25, 11, 3]. In these domains, the task specifications comprise a set of subtasks that
the agent must complete and a list of precedence constraints defining the admissible orders in which
the subtasks must be executed. These specifications belong to the class of formulas that form the
support of the prior distributions proposed by Shah et al. [22].

Our experiments are aimed at evaluating the following hypotheses:

1. H1: Both the Constrained and Relaxed edge matching conditions should exceed LPOPL’s
capability to transfer to novel specifications. Note that while LPOPL was not explicitly
developed to transfer to novel specifications in a zero-shot setting, it can satisfy specifications
that are a progression of one of the formulas that the agent was trained on.

2. H2: Relaxed edge matching criterion will result in a greater success rate than the Constrained
criterion.

3. H3: It is easier to transfer learned policies for LTL formulas conforming to certain templates
(Section 6.2).

4. H4: Training with formulas conforming to certain formula templates leads to a greater
success rate when transferring to all specification types.

6.1 Task Environment

We implement LTL-transfer3 within a Minecraft-inspired discrete grid-world domain [2, 25]. Each
grid cell can be occupied by one of nine object types, or it may be vacant; note that multiple instances
of an object type may occur throughout the map. The agent can choose to move along any of the four
cardinal directions, and the outcome of these actions is deterministic. An invalid action would result
in the agent not moving at all. A given task within this environment involves visiting a specified set
of object types in an admissible order determined by ordering constraints. The different types of
ordering constraints are described in Section 6.2. Task environment maps are similar to the 5 × 5
maps depicted in Figure 2; however, all the maps used for evaluation were 19× 19.

6.2 Specification Types

We considered the following three types of ordering constraints for a comprehensive evaluation of
transferring learned policies across different LTL specifications. Each constraint is defined on a
binary pair of propositions a and b, and without loss of generality, we assume that a should precede b.
The three types of constraints are as follows:

1. Hard: Hard orders occur when b must never be true before a. In LTL, this property can be
expressed through the formula ¬bU a.

2. Soft: Soft orders allow b to occur before a as long as b happens at least once after a holds
for the first time. Soft orders are expressed in LTL through the formula F(a ∧ Fb).

2We used the version by Toro Icarte et al. [25] https://bitbucket.org/RToroIcarte/lpopl
3Code: https://github.com/jasonxyliu/ltl_transfer
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(a) (b) (c)

Figure 3: Figure 3a depicts the success rate on the mixed test set after training on the mixed training
set of various sizes for the LPOPL baseline and for the two edge-matching criteria. Figure 3b depicts
the success rate of the agent trained on mixed training sets of various sizes using LTL-Transfer with
the Constrained edge-matching criterion when transferring to test sets of various specifications types.
Figure 3c depicts the success rates with the Relaxed edge-matching criterion. Note that the error bars
depict the 95% credible interval if the successful transfer was modeled as a Bernoulli distribution.

3. Strictly Soft: Strictly soft ordering constraints are similar to soft orders; however, b must
be true strictly after a first holds. Thus a and b holding simultaneously would not satisfy a
strictly soft order. Strictly soft orders are expressed in LTL through the formula F(a ∧ XFb)

We sampled five training sets: hard, soft, strictly soft, no-orders, and mixed; with 50 formulas each
that represent different specification types. The sub-tasks to be completed and the ordering constraints
were sampled from the priors proposed by Shah et al. [22]. All ordering constraints within the hard,
soft, and strictly soft training sets were expressed through the respective templates described here.
There were no ordering constraints to be satisfied for the no-orders. In the mixed training set, each
binary precedence constraint was expressed as one of the three ordering types described in 6.2.

In addition to the training set, we sampled a test set of 100 formulas for each set type. This mimics
the real-world scenario where the agent would train on a few specifications but might be expected to
satisfy a wide array of specifications during deployment.

6.3 Experiment configurations

For each experimental run, we specified the training set type and size and the test set type. All
experiments were conducted on four different grid world maps. The evaluation metrics include the
success rate on each of the test set specifications. We logged the reason for any failed run.

The precomputations for compiling the set of edge-centric options were computed on a high-
performance computing (HPC) cluster hosted by our university. As the compilation of state-centric
options into transition-centric options allows for large-scale parallelism with no interdependency, we
were able to share the workload among a large number of CPU cores.

7 Results and Discussion

Comparison with LPOPL LPOPL’s use of progressions and the multi-task learning framework
allow it to handle tasks that lie within the progression set of the training formulas. To compare
the performance of LTL-Transfer and LPOPL, we trained each of them on mixed training sets of
varying sizes and evaluated their success rate on mixed test set. Figure 3a depicts the success rate
of LTL-Transfer (orange and blue lines) and LPOPL (green line). The error bars represent the 95%
credible interval if the success rate was modeled as the parameter of a Bernoulli distribution with a
conjugate beta prior. Note that LTL-Transfer exceeds the performance of LPOPL in zero-shot transfer
to novel specifications using both the Constrained and Relaxed edge matching criteria (Section
5.3) thus supporting H1. By training on 50 specifications of the mixed type, LTL-Transfer with the
Relaxed edge matching criterion can complete more than 90% of unseen task specifications.

Effect of edge matching criterion Next, we trained our agent on mixed specification types of
varying sizes and used LTL-Transfer to transfer the learned policies to complete the specifications
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(a) (b)

Figure 4: Figure 4a depicts the heatmap of success rates with various training and test specification
types with the Constrained edge matching criterion. Similarly, Figure 4b depicts the heatmap with
the Relaxed edge matching criterion.

in all five test sets. The success rates with the Constrained edge matching criterion are depicted in
Figure 3b, while those for the Relaxed edge matching criterion are depicted in Figure 3c. We note
that the Relaxed edge matching criterion is capable of successfully transferring to a larger number of
novel specifications across all specification types, thus supporting H2

Relative difficulty of specification type Figure 3b indicates that the different specifications are
equally difficult to transfer learned policies to when using the Constrained edge matching criterion.
However, Figure 3c indicates that with the Relaxed edge matching criterion, LTL-Transfer is capable
of transferring to novel specifications with Soft or Strictly Soft orders after training on very few
specifications. It also indicates that specifications with Hard orders are the most difficult to transfer to.
Therefore H3 is supported only for the Relaxed edge matching criterion, and not for the Constrained
criterion.

Transferring across specification type Finally, we evaluate whether certain specification types are
more capable of transferring to all specification types by training our agent on different specification
types and attempting to transfer those policies to other specification types. Figure 4a depicts the
heatmap of success rates obtained by training the agent on 50 specifications of the type indicated by
the row and transferring it to the test set of specification types indicated by the column while using
the Constrained edge matching criterion. Similarly, Figure 4b depicts the success rates using the
Relaxed edge matching criterion. Note that no single specification type proved to be the best training
set, thus providing evidence against H4.

Note that in all of our runs, the agent never violated a constraint leading to an unrecoverable failure,
which is crucial in safety-critical applications. The causes for failure to transfer included cases where
there was no feasible path to an accepting state with the set of options, or the agent attempted all
available options without progressing the task.

8 Robot Demonstrations

We demonstrate LTL-Transfer on Spot [1], a quadruped mobile manipulator, in a household envi-
ronment where the robot can fetch and deliver objects while navigating through the space. The
robot was trained on 2 LTL tasks ¬deska U book ∧ Fdeska and ¬deskb U juice ∧ Fdeskb,
then transferred the learned skills to 8 combinations of soft-ordering tasks F(obj∗ ∧ F(desk∗ ∧
F(obj∗ ∧ Fdesk∗))) in zero-shot fashion. For the tasks that LTL-Transfer cannot transfer (e.g.
¬deska U book ∧ ¬juiceU deska ∧ ¬deskb Ujuice ∧ Fdeskb), the robot, as expected, does
not start execution thus avoids violations of any constraints 4.

Please see the supplementary material for more details about this environment, the training and test
tasks.

4Video: https://youtu.be/FrY7CWgNMBk
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9 Conclusion

We introduced LTL-Transfer, a novel algorithm that leverages the compositionality of linear temporal
logic to solve a wide variety of novel, unseen LTL specifications. It segments policies from training
tasks into portable, task-agnostic transition-centric options that can be reused for any task. We
demonstrate that LTL-Transfer can solve over 90% of unseen task specifications in our Minecraft-
inspired domains while training on only 50 specifications. We further demonstrated that LTL-Transfer
never violated any safety constraints and aborted task execution when no feasible solution was found.

LTL-Transfer enables the possibility of maximally transferring the learned policies of the robot to
new tasks. We envision further developing LTL-Transfer to incorporate long-term planning and
intra-option policy updates to generate not just satisfying but optimal solutions to novel tasks.
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10 Appendix

10.1 Edge matching criteria

LTL-Transfer uses a set of edge matching conditions to prune the infeasible edges from the reward
machine (RM) graph given a set of transition-centric options and to determine the candidate options
given the current RM state and a particular outgoing edge to target. Below, we present two edge
matching conditions, constrained and relaxed, that both ensure progression of the reward machine
towards and the transition leading to non-failure states.

Without the loss of generality, we assume the test specification is ϕtest, the test task is in RM state q,
where the self-transition edge is eϕtest

q,q and the targeted edge transition is eϕtest

q,q′ . We are determining
the applicability of the transition-centric option oe1,e2 .

10.1.1 Constrained edge matching criterion

The constrained edge matching criterion ensures every truth assignment that satisfies the self transition
edge eϕtest

q,q of RM also satisfies the self transition edge e1 of the transition-centric option, and the
same condition holds for the outgoing edge eϕtest

q,q′ of RM and the outgoing edge e2 of the option.
Mathematically, the following equation must evaluate to true to declare a constrained match, where
asg and asg′ represent truth assignments, sat(f, asg) is a function that evaluates the Boolean formula
f on the truth assignment asg, and sat_models(f) returns all truth assignments that satisfy the
Boolean formula f . We used the Sympy library for logic operations [19].

sat(e1, asg) ∧ sat(e2, asg′) ∀asg ∈ sat_models(eϕtest
q,q ), ∀asg′ ∈ sat_models(eϕtest

q,q′ ) (4)

10.1.2 Relaxed edge matching criterion

The relaxed edge matching criterion ensures that the self transition edges e1 and eϕtest
q,q share satisfying

truth assignments, so are the outgoing edges e2 and eϕtest

q,q′ . We let the failure edge e⊥ be the edge
from the current RM state q to the failure state q⊥ if one exists. To prevent the selection of a
transition-centric option oe1,e2 that violates constraints, we enforce that both self and outgoing edges
of the option, e1 and e2, must not share any satisfying truth assignment with the failure edge e⊥ if one
exists. Lastly, to guarantee RM progression after applying the transition-centric option, the relaxed
edge matching condition ensures that the outgoing edge e2 of the option must share no satisfying truth
assignments with the self transition edge eϕtest

q,q of the RM. Mathematically, the following equation
must evaluate to true to declare a relaxed match, where sat(f) is a function that determines if any
truth assignment exists to satisfy the Boolean formula f .

sat(e1 ∧ eϕtest
q,q ) ∧ sat(e2 ∧ eϕtest

q,q′ ) ∧ ¬sat(e1 ∧ e⊥) ∧ ¬sat(e2 ∧ e⊥) ∧ ¬sat(e2 ∧ eϕtest
q,q ) (5)

10.2 Full Results

Cause of failure: As described in our draft, we logged the reason for failure for each unsuccessful
transfer attempt as one of three possible causes: specification failure, where the agent violates a
constraint and the reward machine is progressed to an unrecoverable state; no feasible path, where
there are no matched transition-centric options for paths connecting the start state to an accepting
state; options exhausted, where there are no further transition-centric options available to the agent to
further progress the state of the task.

Figure 5 depicts the relative frequency of the failure modes when the agent is trained and tested
on mixed task specifications. Note that with the Constrained edge-matching criterion, absence of
feasible paths connecting the start and the accepting state is the primary reason for failure (Figure
5a, whereas with the Relaxed edge-matching criterion, the agent utilizing all available safe options
without progressing the task is the primary reason for failure (Figure 5b).

Learning curve for various training datasets: Next, we present the results for learning curve of
the success rate when transferring policies learned on different specification types.

The learning curves for training on formulas from the Hard training set with both the edge matching
criteria are depicted in Figure 6.
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(a) Constrained (b) Relaxed

Figure 5: Reasons for failed task executions for agents trained and evaluated on Mixed task specifica-
tion datasets. Note that all values are depicted in fractions.

The learning curves for training on formulas from the Soft training set with both the edge matching
criteria are depicted in Figure 7.

The learning curves for training on formulas from the Strictly Soft training set with both the edge
matching criteria are depicted in Figure 8.

The learning curves for training on formulas from the No Orders training set are being generated at
the time of submission, and are expected to share nearly identical trends as the learning curves from
the other training sets given the completed data points. We will include the plots in the final version
of the paper.

Note that for training on each of the specification types, the learning curve trends are nearly identical
to the learning curves on training with Mixed specification types as depicted in Figure 3 in the main
draft. Hard specification types remain the most challenging specification ordering types to transfer to.

(a) Constrained (b) Relaxed

Figure 6: Figure 6a depicts the success rate of the agent trained on Hard training sets of various
sizes using LTL-Transfer with the constrained edge-matching criterion when transferring to test sets
of various specifications types. Figure 6b depicts the success rates with the relaxed edge-matching
criterion. Note that the error bars depict the 95% credible interval if the successful transfer was
modeled as a Bernoulli distribution.

10.3 Selected Solution Trajectories

Consider the case with mixed training set with 5 formulas on map 0. The training formulas are:
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(a) Constrained (b) Relaxed

Figure 7: Figure 7a depicts the success rate of the agent trained on Soft training sets of various sizes
using LTL-Transfer with the constrained edge-matching criterion when transferring to test sets of
various specifications types. Figure 7b depicts the success rates with the relaxed edge-matching
criterion. Note that the error bars depict the 95% credible interval if the successful transfer was
modeled as a Bernoulli distribution.

(a) Constrained (b) Relaxed

Figure 8: Figure 8a depicts the success rate of the agent trained on Strictly Soft training sets of various
sizes using LTL-Transfer with the constrained edge-matching criterion when transferring to test sets
of various specifications types. Figure 8b depicts the success rates with the relaxed edge-matching
criterion. Note that the error bars depict the 95% credible interval if the successful transfer was
modeled as a Bernoulli distribution.

• Fgrass ∧ Fshelter ∧ F(wood ∧ XFworkbench)

• Ftoolshed ∧ Fworkbench ∧ Fshelter ∧ (¬toolshedU shelter) ∧ F(grass ∧ Fbridge)

• Ftoolshed ∧ F(shelter ∧ F(axe ∧ Fwood))

• Firon ∧ F(shelter ∧ XF(bridge ∧ XFfactory))

• Ffactory

One of the Mixed test formulas was ϕtest = Fworkbench ∧ Fgrass ∧ Faxe. The reward machine
for this task specification is depicted in Figure 9a. Given the training set of formulas, and the use of
the Constrained edge matching criterion, the start state is disconnected from all downstream states as
no transition-centric options match with the edge transitions. Therefore, the agent does not attempt to
solve the task and returns failure with the reason being no feasible path, i.e. a disconnected reward
machine graph after removing infeasible edges.

If the Relaxed edge matching criterion is used, there are matching transition-centric options for each
of the RM edges. The trajectory adopted by the agent when transferring the policies is depicted in
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Figure 10. The agent collects all the three requisite resources before it terminates the task execution.
Further note that the agent passes through a wood resource grid as the specification does not explicitly
prohibit it.

(a) (b)

Figure 9: Figure 9a depicts the reward machine for the the specification ϕtest =
Fworkbench ∧ Fgrass ∧ Faxe. Figure 9b depicts the edges that do not have a compatible
transition-centric option for the Constrained edge matching criterion. Note that all the edges have at
least one matched transition-centric option for the Relaxed criterion.

Figure 10: Trajectory executed by the agent using LTL-Transfer on the specification ϕtest =
Fworkbench ∧ Fgrass ∧ Faxe.

10.4 Example specifications

Here we provide the specifications and the interpretations of three formulas each from the Hard, Soft,
Strictly Soft, No Orders, and Mixed formula types. Note that the training set contained 50 formulas
each (new formulas were added incrementally when varying the training set size), and the test set
contained 100 formulas each.

Hard: Example formulas belonging to the Hard dataset are as follows:

1. Fwood ∧ Faxe ∧¬woodU grass ∧ ¬grassU workbench ∧ ¬workbenchU bridge:
Visit bridge, workbench, grass, wood, and axe. Ensure that bridge, workbench, grass,
wood in that particular order. Objects later in the sequence cannot be visited before the prior
objects.

2. Fworkbench ∧Ffactory ∧ Firon ∧ Fshelter ∧ ¬factory U axe: Visit workbench,
factory, iron, shelter, and axe. Ensure that factory is not visited before axe.

3. Ftoolshed ∧ Fbridge ∧ Ffactory ∧ Faxe ∧ ¬bridgeU wood: Visit toolshed, bridge,
factory, axe, and wood. Ensure that bridge is not visited before wood.

16



Soft: Examples belonging to the Soft dataset are as follows:

1. F(bridge ∧ F(factory ∧ F(iron ∧ Fshelter))): Visit bridge, factory, iron, and
shelter in that sequence. The objects later in the sequence may be visited before the prior
objects, provided that they are visited at least once after the prior object has been visited.

2. Fworkbench ∧F(factory ∧ Fgrass): Visit the workbench, factory, and grass: Visit
grass at least once after visiting the factory.

3. F(axe ∧ Ffactory) ∧ Fworkbench: Visit axe, factory, and workbench. Ensure that
factory is visited at least once after axe is.

Strictly Soft: Examples belonging to the Strictly Soft dataset are identical to the Soft specifications,
except they do not allow for simultaneous satisfaction of multiple sub-tasks. The subtasks in sequence
must occur strictly temporally after the prior subtask. This is enforced using XFa instead of Fa.

No Orders: These specifications only contain a list of subtasks to be completed. No temporal orders
are enforced between the various subtasks.

Mixed: Examples belonging to the Mixed dataset are as follows:

1. Ftoolshed ∧ Ffactory ∧ ¬toolshed U shelter ∧ F(grass ∧ Fbridge): Visit the
toolshed, factory, shelter, grass, and bridge. Ensure that toolshed is not visited before
the shelter, and bridge is visited at least once after grass.

2. Fgrass ∧ ¬grass U toolshed ∧ F(factory ∧ XFworkbench): Visit grass,
toolshed, factory, and workbench. Ensure that grass is not visited before toolshed,
and workbench is at least visited once strictly after factory.

3. Firon ∧ ¬ironU toolshed ∧ F(shelter ∧ XFwood): Visit iron, toolshed, shelter,
and wood. Ensure that iron is not visited before toolshed, and wood is at least visited once
strictly after shelter.

10.5 Robot demonstrations

We demonstrated LTL-Transfer on Spot [1], a quadruped mobile manipulator, in a household environ-
ment, as shown in Figure 11, where the robot can fetch and deliver objects while navigating through
the space.

LTL-Transfer first trained policies to solve 2 training tasks Φtrain = {¬deska U book ∧
Fdeska, ¬deskb U juice ∧ Fdeskb} in simulation. Then we demonstrated the zero-shot transfer
capability of LTL-Transfer on a set of test tasks, as shown in Table 1. The robot can complete test
tasks that it is expected to succeed, as shown in an example video 5. For the test tasks that it is
expected to fail, the robot as expected does not start execution because LTL-Transfer does not produce
a feasible path through the reward machine graph given the transition-centric options learned from
training tasks Φtrain.

The state space of the household environment includes the locations of the robot and the 4 objects,
i.e. 2 desks, a book on a bookshelf and a juice bottle on a kitchen counter. The robot can move in 4
cardinal directions deterministically, and an invalid movement does not change the robot’s position.
The robot performs the pick action after it moves to the grid cell representing book or juice. We
finetuned an off-the-shelf object detection model 6 to determine the grasp point from an RGB image
by selecting the center point of the most confident bounding box over the target object. The robot
performs the place action after it moves to the grid cell representing deska or deskb at the end of a
trajectory by an option policy while carrying an object, i.e. a book or a juice bottle.

5Video: https://youtu.be/FrY7CWgNMBk
6https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/
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Figure 11: The map of the household environment and the corresponding propositions used for the
robot demonstrations.

Table 1: 10 Test LTL Tasks for Robot Demonstrations.
Test LTL Task Expected to
F(book ∧ F(deska ∧ F(juice ∧ Fdeska))) succeed
F(book ∧ F(deska ∧ F(juice ∧ Fdeskb))) succeed
F(book ∧ F(deskb ∧ F(juice ∧ Fdeska))) succeed
F(book ∧ F(deskb ∧ F(juice ∧ Fdeskb))) succeed
F(juice ∧ F(deska ∧ F(book ∧ Fdeska))) succeed
F(juice ∧ F(deska ∧ F(book ∧ Fdeskb))) succeed
F(juice ∧ F(deskb ∧ F(book ∧ Fdeska))) succeed
F(juice ∧ F(deskb ∧ F(book ∧ Fdeskb))) succeed
¬deska U book ∧ ¬juiceU deska ∧ ¬deskb U juice ∧ Fdeskb fail
¬deskb U juice ∧ ¬book U deskb ∧ ¬deska U book ∧ Fdeska fail
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