
Leveraging Temporal Structure in Task Specifications
for POMDP Planning

Xinyu Liu, Eric Rosen, Suchen Zheng, Tyler Edwards, Ankit Shah, George Konidaris and Stefanie Tellex

Abstract— Planning sequential actions in a partially observ-
able environment while satisfying temporal constraints is chal-
lenging yet an essential feature of many robotic applications.
A constrained natural language command like “Find the new
apartment complex while avoiding the park” is difficult for
an autonomous delivery drone to understand. Previous plan-
ning methods chose to sacrifice generality for optimality and
efficiency in large state-action spaces by using domain and task-
specific action heuristics or used a full-width backup planner
that did not scale well. We represent a set of constrained task
specifications as linear temporal logic (LTL) expressions and
present a new sampling-based POMDP planner, LTL-POMCP,
that leverages structured constraints for efficient planning by
constructing a shaping term to bias action selection towards
achieving subgoals of an LTL. We augment an environment
partially observable Markov decision process (POMDP) with
an LTL task specification then use LTL-POMCP to efficiently
solve the resultant composite POMDP. Quantitative results show
that LTL-POMCP can efficiently solve LTL tasks in various
domains, and scale to large environments. We demonstrate the
first end-to-end system from temporally-constrained natural
language to robot policies in partially observable maps in
simulation with up to 50% improvement in wall clock time,
and on a mobile manipulator in the real world.

I. INTRODUCTION

Planning sequential actions in partially observable envi-
ronments by following natural language commands that spec-
ify goals and path constraints is a challenging yet essential
feature of robots interacting with humans. We consider a set
of natural language commands specifying goals and temporal
constraints that can be translated to a linear temporal logic
(LTL) expression [1]. For example, the command “Find the
new apartment complex while avoiding the park” instructs
an autonomous delivery drone to reach the destination and
avoid the park due to possible collisions with trees.

Previous work solved this LTL task with a full-width
backup planner in small partially observable domains [2].
A sampling-based planner, like Partially Observable Monte-
Carlo Planning (POMCP) [3], scales to larger domains
but requires domain and task-specific action heuristics to
constrain the search space.

Our key insight is to leverage temporal constraints for
efficient planning via a shaping term to bias a sampling-
based planner to sample trajectories progressing towards
automatically extracted subgoals. We use a class of LTLs
to represent constrained task specifications because they can
be translated to deterministic finite automaton (DFA) [4]
which provides structured information about subgoals and
final targets. The DFA is used in conjunction with an envi-
ronment POMDP to automatically construct an LTL-POMDP
planning problem. To plan efficiently in large domains, we

Fig. 1: A mobile manipulator follows the natural language
command “Stay in the kitchen until find the water bottle
then bring it to the bedroom and always avoid the storage
room” in a partially observed domain. The command is trans-
lated to LTL formula kitchenU(water∧F(bedroom))∧
G(¬storage). The room locations are known, and the
target object is partially observed.

propose LTL-POMCP, a new sampling-based planner with
a shaping term added to its action value estimates to bias
the sampling of actions that likely induce DFA transitions
leading to subgoals and high returns. During the Monte-Carlo
simulation, besides tracking action value estimates, visitation
counts of states and actions, LTL-POMCP counts the DFA
transitions occurred after taking an action in the current
state then uses them to augment action value estimates. Our
approach automatically extracts subgoals from constrained
task specifications thus does not need domain experts to
engineer action heuristics and can scale to large domains.

Quantitative results show that LTL-POMCP is more gen-
eralizable across LTL task specifications than POMCP with
domain and task-specific action heuristics [3] and more
scalable than a planner based on value iteration [2]. We
demonstrate the first end-to-end system from temporally-
constrained natural language to policies in partially observed
maps with up to 50% improvement of wall clock time in
simulation and on a mobile manipulator in the real world.

The main contributions of this work are as follows,
• A new sampling-based POMDP planner, LTL-POMCP,

that leverages temporal constraints from an LTL task
specification, generalizes across environments and tasks,
and scales to large domains.

• An end-to-end system from temporally-constrained nat-
ural language to robot behavior in partially observed
robotic domains in simulation and real world, as shown
in Fig. 2.

NL command:
"Stay on the 1st Street and

find the bank"

LTL:
"G(street1) & F(bank)"

NL
translator

LTL
translator

Environment
POMDPLTL-POMDPLTL-POMCPPolicy

DFA

Constructor

Fig. 2: End-to-End System for the Robotic Domains. Natural language is translated to an LTL then a DFA. The DFA
and the environment POMDP are composed to construct an LTL-POMDP, which is solved by LTL-POMCP online.

II. BACKGROUND

This section introduces background knowledge on linear
temporal logic, deterministic finite automaton, POMDP, and
terminologies used for the rest of the paper.

Linear Temporal Logic (LTL): We use the obligation
class of linear temporal logic (LTL) [5] to specify constrained
robotic tasks because they can represent both goals and
temporal constraints. LTL has the following syntax:

φ := σ | ¬φ | φ ∧ψ | φ ∨ψ | Xφ | Fφ | Gφ | φUψ, (1)

where φ and ψ are LTL formulas; σ ∈ Σ is an atomic
proposition. ¬,∧,∨ are logical connectives negation, con-
junction and disjunction. LTL extends propositional logic
with temporal operators, X (next), F (finally), G (always or
globally) and U (until), being applied to future time steps.
We evaluate the satisfaction of an LTL formula on an infinite
sequence w = w0w1 . . . , where wi ∈ 2Σ. Thus for an LTL
formula Xφ to hold true at time i, φ must be true at the
next time step i+ 1. Fφ is true at time i if φ will be true
at some future time j ≥ i. Gφ holds true if φ is true for the
entire sequence w. φUψ is satisfied by w if φ holds true at
least until ψ becomes true, which must happen at the current
or a future time. The obligation class covers a wide range
of realistic robotic tasks with goals and constraints. Table I
shows an example of a such LTL task specification. For
example, to satisfy G(street1)∧F(bank), a robot needs to
stay on the First Street and finally reach the bank. Kupferman
and Vardi [6] showed that LTLs from the obligation class can
be translated to deterministic finite automata (DFA).

Deterministic Finite Automaton (DFA): We use the Spot
library [7] to translate an LTL formula to an equivalent
DFA [8]. A DFA is a 5-tuple D = (Q,Σ,δ ,q0,F), where
Q is a finite set of states; Σ is a finite set of atomic
propositions; δ : Q× 2Σ → Q is a deterministic transition
function; q0 ∈Q is the initial state; F = Fsuccess

⋃
Ffail ⊆Q is

a set of success and failure terminal states. A run on a finite
sequence w = w0w1 . . .wn with wi ∈ 2Σ produces a sequence
of states q0q1 . . .qn with qt ∈Q, where q0 is the initial state,
qn ∈ F is a final state, and qt+1 = δ (qt ,wt). Table I shows
an example of an LTL formula and its corresponding DFA,
whose initial state is 1, success state is 0, failure state is 2.

Environment POMDP: We model the environment as
a Partially Observable Markov Decision Process (POMDP).
A POMDP is defined by a 7-tuple (S,A,O,T,O,R,γ). The
dynamics T (s,a,s′) = P(s′|s,a) and R(s,a) = E[r|s,a] de-
termine the distribution of the next state s′ ∈ S and the
step reward after taking action a ∈ A in state s ∈ S. In

TABLE I: An example of natural language, linear temporal
logic (LTL) and Deterministic Finite Automaton (DFA).

Language Stay on the First Street and find a bank.
LTL G(street1)∧F(bank)

DFA

POMDP, states cannot be fully observed. Instead the agent
receives an observation o ∈ O based on an observation
model O(o|a,s′) = P(o|a,s′). A policy of a POMDP is
defined by π(h) = a, where h is a history of actions and
observations. Any POMDP has at least one optimal policy
π∗ that maximizes a value function V π(h) = Eπ [

∞

∑
t

γ t−1rt |h].
A belief state is a probability distribution over possible states
given the history, B(s,h) = P(s|h), and it is represented by
a set of particles in this work. We define our environment
POMDP to be generative such that given a transition (s,a,s′),
we can sample from T,R and O to get the next state, an
immediate reward and an observation.

III. RELATED WORK

A large body of research has studied navigation in fully-
observable environments while satisfying goals and temporal
constraints provided by an LTL formula [9, 10, 11, 12, 13].
We consider a more challenging partially observable setting,
where an agent must actively plan to gather information.
Previous work also proposed models to identify temporal
constraints from demonstrations, but focused on specification
inference in a fully observable domain, where the truth values
of the propositions are unambiguously known [14, 15, 16, 17,
18, 19]. Icarte et al. [20] introduced reward machines to rep-
resent non-Markov reward decision processes (NMRDP), and
introduced planning and reinforcement learning algorithms
to compute policies that optimize the non-Markov reward.
Camacho et al. [21] further showed that many formal logic
languages, including a fragment of LTL, can be compiled
into an equivalent reward machine. However, prior work in
planning and reinforcement learning with reward machines
has primarily focused on fully observable domains. LTL-
POMDP generalizes planning and reinforcement learning
with reward machines to partially observable domains.

Bouton et al. [2] solved LTL-POMDP problems with a
full-width backup planner and an exact model of environment

in small domains. The planning could not scale because
Bellman backups are intractable in large state-action spaces
due to the curse of dimensionality and the curse of history.
Instead of estimating the value function via iterative appli-
cations of the Bellman equation using an exact model, a
sampling-based method, like POMCP [3], use Monte-Carlo
simulations to estimate the values from interactions with a
generative model of the environment. But POMCP requires
domain and task-specific action heuristics to constrain the
search space. These heuristics use observations received
during simulations to help decide the best action to take next.
To solve an LTL task in partially observable environment,
Bradley et al. [22] assumed perfect local perception to
partition the environment into known and unknown areas
and did not maintain a probability distribution over states in
the unknown area. Our new sampling-based POMDP planner
automatically extracts subgoals from an LTL to guide the
action selection and is applicable to LTL-POMDP problems
with generative models and noisy sensors.

IV. LTL-POMCP PLANNING

This section provides technical details on how we augment
an environment POMDP with a DFA to construct an LTL-
POMDP and describes LTL-POMCP, a new sampling-based
planner that leverages temporal structure provided by the
DFA to solve LTL-POMDPs and how we translate con-
strained natural language commands to LTL expressions.

LTL-POMDP: We augment an environment POMDP with
a DFA, so the resultant LTL-POMDP states are Markovian
and encoding high-level subgoals and termination conditions
of the task. LTL-POMDP = (S̃,L,A,O, T̃ , Õ, R̃,γ), where
S̃ = S×Q is a Cartesian product of environment POMDP
and DFA states; L : S→ 2Σ is a labeling function that maps
environment POMDP states to atomic propositions. Because
the environment POMDP states are partially observable,
their corresponding DFA states are also partially observable.
During planning, an LTL-POMCP agent maintains a belief
over composite states s̃ = (s,q).

The transition probability of entering LTL-POMDP state
s̃′ = (s′,q′) after taking action a from state s̃ = (s,q) is

T̃ (s̃,a, s̃′) =

{
T (s,a,s′), if q′ = δ (q,L(s′))
0, otherwise

. (2)

As the example shown in the Table I, taking an action in
the environment to reach a bank while staying on the First
Street induces the DFA transition from the state q = 1 to the
goal q = 0.

The observation model of LTL-POMDP is the same as the
environment POMDP, i.e.

Õ(s̃,a, s̃′) = O(s,a,s′). (3)

The reward function is specified by a DFA transition from
state q to q′.

R̃(s̃,a, s̃′) =

{
rgoal, if q′ ∈ Fsuccess

rfail, if q′ ∈ Ffail
, (4)

Algorithm 1 LTL-POMCP Planner

procedure SIMULATE(s, h, depth)
if γdepth < ε then

return 0
end if
if h /∈ T then

for a ∈ A do
T (ha)← (Ninit(ha),Vinit(ha), /0, e2freq= {})

end for
return ROLLOUT(s, h, depth)

end if
e = q2edge[s.q]

N(hbe) = e2freq[e]

a← argmaxb V (hb)+α

√
N(h)
N(hb) +β

N(hbe)
N(hb)

(s′,o,r)∼G(s,a)
R← r+ γ·SIMULATE(s′, hao, depth+1)
B(h)← B(h)

⋃
{s}

N(h)← N(h)+1
N(ha)← N(ha)+1
e = (s.q,s′.q)

e2freq[e] = e2freq[e]+1

V (ha)←V (ha)+ R−V (ha)
N(ha)

return R
end procedure

where rgoal� 0 and rfail� 0. We use rgoal = 100 and rfail =
−100 for the experiments presented in this paper.

LTL-POMCP: LTL-POMDPs model POMDP planning
problems with temporally constrained task specifications. We
introduce LTL-POMCP, a new sampling-based planner that
leverages subgoals and termination conditions provided by
LTLs to efficiently solve LTL-POMDP problems in large
domains.

We adopt the POMCP algorithm [3] with two modi-
fications. In addition to the estimated Q-values Q̂(h,a),
state and action visitation counts N(h) and N(h,a), LTL-
POMCP tracks N(h,a,e), the frequencies of a preferred DFA
transition occurred after taking action a in the current history
state h during Monte-Carlo simulation. We then augment
the original Q-value estimates (the first two terms) with a
shaping term (the third term) as follows,

Q(h,a) = Q̂(h,a)+α

√
logN(h)
N(h,a)

+β
N(h,a,e)
N(h,a)

, (5)

where N(h,a,e) represents the number of times a preferred
DFA transition e occurred after taking action a from the
current history state h. In every non-terminal DFA state, there
is a preferred DFA transition e leading towards a goal, and we
can compute a mapping from states to preferred transitions
q2edge via graph search in the DFA.

Intuitively, the shaping term approximates the proportion
of trajectories that induce a preferred DFA transition after

Fig. 3: Generalization across LTLs. Each column shows the performance of a different LTL task. The top plot shows the
mean discounted return, and the bottom plot shows the success rate vs. simulations. Every data point is an average over 500
runs. The action heuristics used by Heurisitc-POMCP are designed to specifically solve LTL-1.

taking action a in the current state h. It encourages the agent
to exploit actions that induce a favorable DFA transition
leading to high returns, like the DFA transition from 1 to
0 in Table I. With the shaping term, more preferred DFA
transitions occur during planning compared with the baseline
methods.

α and β are coefficients that balance the exploration
behavior induced by the second term and the exploitation
behavior induced by the shaping term in Equation 5, and
can be adjusted based on the complexity of a domain. A
large α and a small β encourage the agent to explore actions
and have good estimates of their values, but the algorithm
takes more simulations to converge. By contrast, if the β

value is relatively large, an agent acts quickly by exploiting
the trajectories experienced in simulations that have high
returns, and it may lead to undesired behaviors that violates
an LTL specification. For the experiments in this paper, we
use α = 100 and β ∈ [10,100]. The β value is chosen to
balance the success rate and planning time.

Thus Equation 5 balances exploring less taken actions
and exploiting actions that have led to a DFA transitions
with high returns. The LTL-POMCP algorithm leverages
high-level subgoals encoded in the DFA and automatically
favors the transitions leading to the DFA goal state without
explicitly constructing preferred action heuristics [3]. The
difference between LTL-POMCP and POMCP are boxed is
in Algorithm 1. We refer readers to the POCMP paper [3]
for the complete algorithm.

Translating Natural Language to LTL: The language
model first uses a pretrained name entity recognizer (NER)
[23] to replace all landmark names from a natural language
command by place holders, then feeds the masked language
into a sequence-to-sequence (Seq2Seq) model with LSTM
cells, and finally substitute the landmark names back in the
output LTL expression. With the help of a pretrained NER,

TABLE II: Comparison of success rates in RockSample
domains of increasing complexity.

RS(3,3) RS(5,5) RS(7,7) RS(9,9)

Ours 100% 100% 99% 96%
(∼ 2hrs)

LTL-SARSOP [2] 100% 100% 100% 0%
(> 24hrs)

we only need to train the Seq2Seq model to memorize LTL
templates, not landmark names.

V. EXPERIMENTS

The aim of our experiments is to test the hypotheses
that the LTL-POMCP planner is more general than POMCP
used with domain and task-specific action heuristics [3] and
more scalable than using a full-width backup planner to
solve LTL-POMDP problems [2] in the RockSample domain,
and demonstrate the end-to-end system from temporally-
constrained natural language to policies in a partially ob-
served robotic domains in simulation and real world. The
implementation uses the pomdp py framework [24].

RockSample: A RockSample problem models a rover
exploring and sampling two types of rocks [25]. RS(n,k) has
k rocks randomly placed in an n×n grid with an exit area on
the right. The agent and rock locations are known; the rock
types are partially observable. An agent in RS(n,k) has k+5
actions (i.e. 4 move, 1 pick up and k sensing actions, one
for each rock), 2 observations of rock types (i.e. good, bad)
and deterministic transitions. The sensing accuracy decreases
exponentially as the distance to a rock increases. We use an
uniform initial belief over the rock types.

To show LTL-POMCP is more generalizable across LTL
task specifications than POMCP, which uses domain and

Fig. 4: Image 1 shows the fully observed map. Images 2-4 show points on a trajectory that follows the natural language
command “Always stay on the First Street and find the bank.” The fog of war effect shows agent’s partial observability of
the bank. The agent has perfect knowledge of where streets are.

task-specific action heuristics [3] (Heurisitc-POMCP), we
compare the discounted return and success rate of the output
policies satisfying given LTL expressions. LTL-POMCP are
given,
• LTL-1: F(good∧F(exit))∧G(¬bad)∧ (¬exitUgood),
• LTL-2: F(bad∧F(exit))∧G(¬good)∧ (¬exitUbad).

The first task requires the robot to pick up a good rock
then go to exit area while always avoiding bad rocks. The
second task requires the robot to pick up a bad rock then
exit while avoiding good rocks. The until clauses in both
LTLs specify constraints that prevent the behavior of exiting
without a desired rock. Using LTLs to specify tasks this way
is different from using numerical rewards. The agent only
needs to pick up 1 desired rock then exit to satisfy the 2
LTL formulas above.

The performance of LTL-POMCP with the shaping
term (LTL-POMCP-shaping) are compared with Heurisitc-
POMCP and regular POMCP provided with an LTL reward
(LTL-POMCP-basic) in Fig. 3. LTL-POMCP-shaping per-
forms better in terms of discounted returns and success rate.
During planning the shaping term encourages exploiting the
trajectories that have led to subgoals in the DFA and helps
LTL-POMCP-shaping converge to success rate of nearly 1
with 10,000 simulations for both tasks.

Heuristic-POMCP uses action heuristics defined to solve
LTL-1, and its performance is comparable with LTL-
POMCP-shaping. But because the action heuristics that are
hard-coded to solve LTL-1 prefer the undesired behaviors
that violate LTL-2, Heurisitc-POMCP performs worse than
LTL-POMCP-basic. More specifically, the action heuristics
encourage the robot to pick up good rocks which conflicts
with the LTL-2 constraint G(¬good). As the number of
simulations increases, the output policy of Heurisitc-POMCP
converges to only moving and checking without every pick-
ing up a rock to alleviate the conflict between the action
heuristics and LTL-2 constraints. LTL-POMCP-basic does
not use any structure information from task specifications,
thus it has the largest variances among the three methods.
The automatic extraction of preferred transitions from DFA
by LTL-POMCP-shaping and the hand-crafted action heuris-
tics used by Heurisitc-POMCP reduce variances of Monte-

Fig. 5: Wall clock time comparison of LTL-POMCP-shaping
(ours in green) and LTL-POMCP-basic (baseline in red) in
PO-Map domain for solving LTL tasks of various difficulties.

TABLE III: Examples of LTL task specifications and the cor-
responding natural language commands in PO-MAP domain.

Natural Language Command LTL Expression
Find cafe. F(cafe)
Always stay on 1st Street and find bank. G(st1)∧F(bank)
Always stay on 2nd Street and G(st2)∧
first find cafe then find store. F(cafe∧F(store))
Find store and always avoid 1st Street. G(¬st1)∧F(store)
Stay on 1st Street until find bank. st1Ubank
Stay away from 1st Street until find store. (¬st1)Ustore

Carlo simulations.
LTL-POMCP is also more generalizable than Heurisitc-

POMCP across various domains as we also apply the same
planning algorithm to solve a partially observable robotic
navigation problem while the action heuristics defined for a
RockSample problem do not work for other domains.

To show that LTL-POMCP is more scalable than using a
full-width backup planner to solve LTL-POMDP problems
[2], we compare the success rate as the domain becomes
more complex, i.e. larger grids with more rocks. An full-
width planner SARSOP [26] provided with sparse LTL
rewards (LTL-SARSOP) cannot produce a policy within a
24 hour time limit for RS(9,9). LTL-POMCP-shaping can
constantly solve the problem over 96% success rates within 2
hours, and its speed can be further improved by parallelizing
the Monte-Carlo simulations.

Fig. 6: The images show a mobile manipulator searching for the target object, grasping, finding paths after retrieving the
object, and arriving at the destination while satisfying constraints by the natural language command “Stay in the kitchen
until find the water bottle then bring it to the bedroom and always avoid the storage room”.

We have shown the generalizability and scalability of LTL-
POMCP compared to two prior approaches [3][2]. Now we
demonstrate an application of LTL-POMCP planner in an
end-to-end system from temporally-constrained language to
policies in a partially observable robot navigation domain.

Partially Observable Robotic Navigation Domain: In
the partially observable map (PO-Map), the locations of
major landmarks, e.g. streets, are known, and the locations
of small landmarks, e.g. cafes, stores and banks, are partially
observed. It mimics the real-world scenarios where some
places, like a new apartment complex, are not stored in
a map database, and an agent, like an autonomous drone,
needs to find them by following natural language commands
with temporal constraints from humans. In this experiment,
we consider 5 landmarks in a 20× 20 grid. The goal is to
compute a policy to reach the destination while satisfying a
temporally-constrained natural language command that can
be translated to an LTL from the obligation class. Table III
shows examples of natural language commands and their
corresponding LTLs. The state contains the agent’s pose and
the location of each target landmark. The initial belief is
uniformly distributed over possible target locations, which
can be constrained by an LTL. The agent can rotate in 4
cardinal directions or move forward. After taking an action,
the agent receives a noisy observation of whether the target
landmark is in its fan-shaped sensor range. The sensor has a
depth of 2 and a 95% accuracy. We use a deterministic tran-
sition function and a non-deterministic observation model for
computational reasons. They are also realistic assumptions of
the drones because existing drones can reliably move around
the environment but have less reliable sensors. There is a
+100 reward for completing a given task while satisfying
all its constraints and a −100 reward for violating any
constraints. The executions terminates if the agent violates a
constraint. The discount factor γ = 0.98. If the agent does not
reach the destination within 50 steps, it receives no rewards,
and this trial is counted as a failure.

Based on the planning time observed in the RockSample
domain, LTL-SARSOP cannot solve RS(9,9) in a timely
fashion. We therefore only tested sampling-based planners in
PO-Map due to limited computing resources. We measured
the wall clock time for both LTL-POMCP and the baseline
when they reach a success rate of 1. As shown in Fig. 5,
LTL-POMCP-shaping runs faster than the basic POMCP
without the shaping term in Equation 5 (LTL-POMCP-basic)

with an average improvement of 25.77% over 17 LTL task
specifications. The planning times vary for different tasks
because some LTLs restrict the search space and make the
problem easier to solve. For example, LTLs 5, 6, 10, 11 take
less than 2 seconds to solve because their constraints restrict
the search space to the Second Street, which occupies only
1/4 of the entire grid.

Mobile Manipulation: To demonstrate the ability of LTL-
POMCP planning in the real world, we deployed the planner
on a Kinova Movo robot, a mobile manipulator with a 7-
DoF JACO arm. In a household environment, the robot must
follow natural language commands to find objects and bring
them to certain rooms while satisfying path constraints. The
robot has perfect knowledge of the room locations, and
a partial observability of whether a target object is in its
sensor range with 95% accuracy. It can execute 6 discrete
actions, i.e. rotate in 4 cardinal directions, move forward
and grasp. When it decides to grasp an object, the robot
executes a predefined manipulation skills. We tested 5 natural
language commands in a 6×6 environment with 1536 states
and varying initial poses of the robots. Fig. 6 shows the
execution of one command “Stay in the kitchen until find
the water bottle then bring it to the bedroom and always
avoid the storage room.”. The video recording of the robot
demonstration can be found online 1.

Language Model: The NER we used to recognize land-
marks and objects in natural language commands was pre-
trained on a very large dataset. Thus the language model
can recognize places and objects unseen in the training set.
It took 54 seconds, 421 data points and 5 epochs to train the
Seq2Seq model to achieve 100% accuracy on the joint test
set of PO-Map and the mobile manipulation domain. The
average inference time for the natural language commands
is 0.2528±0.0098 seconds.

VI. CONCLUSIONS
We present a natural way to leverage structure from

challenging task specifications with temporal constraints via
automatic extraction of subgoals from an LTL and using a
shaping term to bias action selection in a new sampling-based
planner. This powerful idea of leveraging structure from con-
strained natural language commands is not limited by specific
logic forms or planning algorithms. We will investigate using
different semantic representations and planners.

1https://youtu.be/pakb8BvNGfo

REFERENCES

[1] A. Pnueli, “The temporal logic of programs,” in IEEE
Symposium on Foundations of Computer Science, 1977.

[2] M. Bouton, J. Tumova, and M. J. Kochenderfer, “Point-
based methods for model checking in partially observ-
able markov decision processes,” in AAAI, 2020.

[3] D. Silver and J. Veness, “Monte-Carlo planning in
large POMDPs,” in Advances in neural information
processing systems, 2010.

[4] M. O. Rabin and D. Scott, “Finite automata and their
decision problems,” IBM journal of research and de-
velopment, vol. 3, no. 2, pp. 114–125, 1959.

[5] Z. Manna and A. Pneuli, “A hierarchy of temporal prop-
erties,” in ACM symposium on Principles of distributed
computing, 1990.

[6] O. Kupferman and M. Y. Vardi, “Model checking of
safety properties,” Formal Methods in System Design,
vol. 19, no. 3, pp. 291–314, 2001.

[7] A. Duret-Lutz, A. Lewkowicz, A. Fauchille,
T. Michaud, E. Renault, and L. Xu, “Spot 2.0 — a
framework for LTL and ω-automata manipulation,” in
Automated Technology for Verification and Analysis,
2016.

[8] J. R. Büchi, “On a decision method in restricted second
order arithmetic,” in The collected works of J. Richard
Büchi. Springer, 1990, pp. 425–435.

[9] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas,
“Temporal logic motion planning for mobile robots,” in
International Conference on Robotics and Automation,
2005.

[10] M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, and
J. MacGlashan, “Environment-independent task speci-
fications via GLTL,” arXiv preprint arXiv:1704.04341,
2017.

[11] Y. Oh, R. Patel, T. Nguyen, B. Huang, E. Pavlick, and
S. Tellex, “Planning with state abstractions for non-
markovian task specifications,” in Robotics: Science
and Systems, 2019.

[12] M. Berg, D. Bayazit, R. Mathew, A. Rotter-Aboyoun,
E. Pavlick, and S. Tellex, “Grounding language to
landmarks in arbitrary outdoor environments,” in In-
ternational Conference on Robotics and Automation,
2020.

[13] R. Patel, E. Pavlick, and S. Tellex, “Grounding lan-
guage to non-markovian tasks with no supervision of
task specifications,” in Robotics: Science and Systems,
2020.

[14] M. Vazquez-Chanlatte, S. Jha, A. Tiwari, M. K. Ho, and
S. Seshia, “Learning task specifications from demon-
strations,” in Advances in Neural Information Process-
ing Systems, vol. 31, 2018.

[15] A. Shah, P. Kamath, J. A. Shah, and S. Li, “Bayesian
inference of temporal task specifications from demon-
strations,” in Advances in Neural Information Process-
ing Systems, vol. 31, 2018.

[16] Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol, and

C. Belta, “Temporal logic inference for classification
and prediction from data,” in Proceedings of the 17th
International Conference on Hybrid Systems: Compu-
tation and Control. ACM, 2014, pp. 273–282.

[17] Z. Kong, A. Jones, and C. Belta, “Temporal logics for
learning and detection of anomalous behavior,” IEEE
Transactions on Automatic Control, vol. 62, no. 3, pp.
1210–1222, 2017.

[18] R. Toro Icarte, E. Waldie, T. Klassen, R. Valenzano,
M. Castro, and S. McIlraith, “Learning reward ma-
chines for partially observable reinforcement learning,”
in Advances in Neural Information Processing Systems,
vol. 32, 2019.

[19] G. Chou, N. Ozay, and D. Berenson, “Explaining multi-
stage tasks by learning temporal logic formulas from
suboptimal demonstrations,” in Robotics: Science and
Systems, 2020.

[20] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A.
McIlraith, “Using reward machines for high-level task
specification and decomposition in reinforcement learn-
ing,” in ICML, 2018.

[21] A. Camacho, R. T. Icarte, T. Q. Klassen, R. A. Valen-
zano, and S. A. McIlraith, “LTL and beyond: Formal
languages for reward function specification in reinforce-
ment learning.” in the Twenty-Eighth International Joint
Conference on Artificial Intelligence, vol. 19, 2019, pp.
6065–6073.

[22] C. Bradley, A. Pacheck, G. Stein, S. Castro, H. Kress-
Gazit, and N. Roy, “Learning and planning for tem-
porally extended tasks in unknown environment,” in
International Conference on Robotics and Automation,
2021.

[23] M. Honnibal, I. Montani, S. V. Landeghem, and
A. Boyd. (2020) spaCy: Industrial-strength natural
language processing in python. [Online]. Available:
https://doi.org/10.5281/zenodo.1212303

[24] K. Zheng and S. Tellex, “pomdp py: A framework
to build and solve pomdp problems,” in ICAPS 2020
Workshop on Planning and Robotics (PlanRob).

[25] T. Smith and R. Simmons, “Heuristic search value iter-
ation for POMDPs,” in The Conference on Uncertainty
in Artificial Intelligence, 2004.

[26] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Effi-
cient point-based POMDP planning by approximating
optimally reachable belief spaces.” in Robotics: Science
and systems, 2008.

