

A Survey of Robotic Language Grounding: Tradeoffs between Symbols and Embeddings

Vanya Cohen (vanya@utexas edu), Jason Xinyu Liu (xinyu_liu@brown.edu), Raymond Mooney, Stefanie Tellex, and David Watkins

Robotic Language Grounding

Connect linguistic elements in language to the robot's perception of and actions in the physical world.

- What grounding representation to use?
- How to ground natural language to the grounding representation of choice?

A Spectrum from Symbols to High-dimensional Embeddings

Input Command	"Go to the green room."	"Go to the store on Main Street, and always avoid the parking lot."	"Move the novel onto the table."	"Pick up the largest block."	"I spilled my drink, can you help?"	"Craft a diamond pick-axe."
------------------	-------------------------	--	-------------------------------------	---------------------------------	--	-----------------------------

PDDL Plan Robot Trajectory

Robot Trajectory

Robot Trajectory

End-effector Poses

Why This Spectrum

Symbols: Logic, PDDL

 Discrete; More Structure; More Bias

Plan

- √ Unambiguous semantic
- √ Verifiable
- √ Interpretable
- ✓ Reduce search space
- √ Sound, complete, (often) optimal

 X Require manually defined structures
X Difficult to represent low-level

control

Symbols: Code, Predefined Skill Descriptions

- ✓ Flexible
- ✓ Adaptive
- ✓ LLMs good at general purpose code writing

X Required predefined perception and control models

X May generate incorrect plans

High-dimensional Embeddings

- Continuous; Less Structure; More variance
- ✓ Adaptive

Open Problems and Future Directions

Neuro-symbolic Approach

- POMDP and PDDL planners
- Deep learning models with generalizable representations
- E.g., Jointly learn symbols in the embedding space and skills

Multimodal Dataset

- E.g., text, audio, RGB images, point clouds, voxels, videos, demonstrations
- Semantically diverse

Modular Approach

- Existing robot modules
- E.g., SLAM, motion planning and object detection

Verification and Safety

X May generate incorrect plans

https://arxiv.org/abs/2405.13245

https://jasonxyliu.github.io