
Skill Transfer for Temporal Task Specification:
Supplementary Materials

Jason Xinyu Liu∗, Ankit Shah∗, Eric Rosen, Mingxi Jia, George Konidaris and Stefanie Tellex

I. LPOPL

A DQN policy is a feedforward network with two hidden
layers, each of which has 64 ReLU units. We used the same
hyperparameters suggested in [1] for training, i.e., the learning
rate is 0.0001; the size of the replay buffer is 25,000; 32
transitions are randomly sampled from the replay buffer for
every update; the discount factor is 0.9; exploration decreases
linearly from 1 to 0.02.

II. EXAMPLE LTL FORMULAS

We provide LTL task specifications and their interpretations
from the Hard, Soft, Strictly Soft, No Orders, and Mixed
formula types.

Hard: Example formulas and their interpretations from
the Hard type are as follows:

1) Fworkbench ∧Ffactory ∧ Firon ∧ Fshelter ∧
¬factory U axe: Visit workbench, factory, iron,
shelter, and axe. Ensure that factory is not visited
before axe.

2) Ftoolshed ∧ Fbridge ∧ Ffactory ∧ Faxe ∧
¬bridgeU wood: Visit toolshed, bridge, factory, axe,
and wood. Ensure that bridge is not visited before wood.

3) Fwood ∧ Faxe ∧ ¬wood U grass ∧
¬grass U workbench ∧ ¬workbench U bridge: Visit
bridge, workbench, grass, wood, and axe. Ensure
visiting bridge, workbench, grass, and wood in that
particular order. Objects that occur later in the sequence
cannot be visited before any prior objects.

Soft: Example formulas and their interpretations from the
Soft type are as follows:

1) F(bridge ∧ F(factory ∧ F(iron ∧ Fshelter))): Visit
bridge, factory, iron, and shelter in that sequence.
The objects that occur later in the sequence may be
visited before the prior objects, provided that they are
visited at least once after the prior object has been
visited.

2) Fworkbench ∧ F(factory ∧ Fgrass): Visit the
workbench, factory, and grass: Visit grass at least
once after visiting the factory.

3) F(axe ∧ Ffactory) ∧ Fworkbench: Visit axe,
factory, and workbench. Ensure that factory is visited
at least once after axe.

Strictly Soft: Example formulas and their interpretations
from the Strictly Soft type are identical to the Soft specifica-
tions, except they do not allow simultaneous satisfaction of

∗These authors contributed equally.

multiple sub-tasks. The subtasks in the sequence must occur
strictly after the prior subtask. This is enforced using nested
operators next and finally XFa instead of Fa.

No Orders: These specifications only contain a list of
subtasks to be completed. No temporal orders are enforced
between any two subtasks.

1) Fwood ∧ Fgrass ∧ Fstone: Visit bridge: Collect
wood, grass, stone in no particular order.

Mixed: Example formulas and their interpretations from
the Mixed type are as follows:

1) Ftoolshed ∧ Ffactory ∧ ¬toolshed U shelter ∧
F(grass ∧ Fbridge): Visit the toolshed, factory,
shelter, grass, and bridge. Ensure that toolshed is
not visited before the shelter and bridge is visited at
least once after grass.

2) Fgrass ∧ ¬grass U toolshed ∧
F(factory ∧ XFworkbench): Visit grass, toolshed,
factory, and workbench. Ensure that grass is not
visited before toolshed and workbench is visited at
least once strictly after factory.

3) Firon ∧ ¬ironU toolshed ∧ F(shelter ∧ XFwood):
Visit iron, toolshed, shelter, and wood. Ensure that
iron is not visited before toolshed and wood is visited
at least once strictly after shelter.

III. ADDITIONAL EXPERIMENTAL RESULTS

Learning Curves for Various Training Sets: We present
learning curves of success rates for transferring policies
learned on different specification types.

The learning curves for training on LTL tasks from the Hard
training set with both Relaxed and Constrained edge-matching
conditions are depicted in Figure 1.

The learning curves for training on LTL tasks from the Soft
training set with both Relaxed and Constrained edge-matching
conditions are depicted in Figure 2.

The learning curves for training on LTL tasks from the
Strictly Soft training set with both Relaxed and Constrained
edge-matching conditions are depicted in Figure 3.

The learning curves for training on LTL tasks from the
No Orders training set are being generated at the time of
submission and are expected to share nearly identical trends
as the learning curves from the other training sets. We will
include the plots in the final version of the paper.

Note that for training on each specification type, the
learning curve trends are nearly identical to the learning
curves of training on the Mixed specification types, as depicted
in Figure 3 in the main paper. Hard specification types remain
the most challenging specification types to transfer to.



(a) Relaxed Edge Match (b) Constrained Edge Match

Fig. 1: Figure 1a depicts the success rates of transferring
to five different specifications types using the Relaxed edge-
matching condition after LTL-Transfer being trained on Hard
training sets of various sizes. Figure 1b depicts the success
rates with the Constrained edge-matching condition. Note
that the error bars depict the 95% credible interval if the
successful transfer was modeled as a Bernoulli distribution.

(a) Relaxed Edge Match (b) Constrained Edge Match

Fig. 2: Figure 2a depicts the success rates of transferring
to five different specifications types using the Relaxed edge-
matching condition after LTL-Transfer being trained on Soft
training sets of various sizes. Figure 2b depicts the success
rates with the Constrained edge-matching condition. Note
that the error bars depict the 95% credible interval if the
successful transfer was modeled as a Bernoulli distribution.

(a) Relaxed Edge Match (b) Constrained Edge Match

Fig. 3: Figure 3a depicts the success rates of transferring
to five different specifications types using the Relaxed
edge-matching condition after LTL-Transfer being trained
on Strictly Soft training sets of various sizes. Figure 3b
depicts the success rates with the Constrained edge-matching
condition. Note that the error bars depict the 95% credible
interval if the successful transfer was modeled as a Bernoulli
distribution.

Failure Analysis: As described in the main paper, we
logged the reason for the failure of each unsuccessful transfer

attempt. There are three possible causes:
1) Specification failure: a constraint is violated during

execution, and the reward machine progresses to an
unrecoverable state.

2) No feasible path: there are no paths connecting the start
reward machine state to an accepting reward machine
state with matching transition-centric options.

3) Options exhausted: there are no further transition-centric
options available to further progress the state of the
reward machine.

Figure 4 depicts the relative frequency of the failure modes
when LTL-Transfer is trained and tested on mixed task
specifications. Note that with the Relaxed edge-matching
condition not progressing the task after utilizing all available
safe options is the primary reason for failure (Figure 4a)
whereas, with the Constrained edge-matching condition,
the absence of feasible paths connecting the start and the
accepting state is the primary reason for failure (Figure 4b).

(a) Relaxed Edge Match (b) Constrained Edge Match

Fig. 4: Reasons for failed task execution after being trained
and evaluated on the Mixed task specification datasets. Note
that all values are depicted in fractions.

IV. SELECTED SOLUTION TRAJECTORIES IN SIMULATION

Consider the case with Mixed training set with 5 formulas
on Map 0. The training formulas are:

• Fgrass ∧ Fshelter ∧ F(wood ∧ XFworkbench)
• Ftoolshed ∧ Fworkbench ∧ Fshelter ∧
(¬toolshed U shelter) ∧ F(grass ∧ Fbridge)

• Ftoolshed ∧ F(shelter ∧ F(axe ∧ Fwood))
• Firon ∧ F(shelter ∧ XF(bridge ∧ XFfactory))
• Ffactory

One of the Mixed test formulas is φtest =
Fworkbench ∧ Fgrass ∧ Faxe. The reward machine
for this task specification is depicted in Figure 5a. Given
the training set of formulas and the use of the Constrained
edge-matching condition, the start reward machine state is
disconnected from all downstream states as no transition-
centric options match the edge transitions. Therefore,
LTL-Transfer does not attempt to solve the task and returns
failure with the reason being no feasible path, i.e., a
disconnected reward machine graph after removing infeasible
edges.

If the Relaxed edge-matching condition is used, there
are matching transition-centric options for each edge. The



trajectory adopted by LTL-Transfer when transferring the
policies is depicted in Figure 6. The robot collects all three
requisite resources before it terminates the task execution.
Further, note that the robot passes through a grid containing
wood as the specification does not explicitly prohibit it.

V. ROBOT DEMONSTRATION

The 50 test tasks executed on the robot are shown in Table I.
The Proposition a represents a brown desk, b represents a
white desk, c represents a couch, d represents a door, s
represents a bookshelf, and k represents a kitchen counter.

REFERENCES

[1] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith,
“Teaching multiple tasks to an RL agent using LTL,” in Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), 2018, pp. 452–461.



(a) (b)

Fig. 5: Figure 5a depicts the reward machine for the task specification φtest = Fworkbench ∧ Fgrass ∧ Faxe, as well
as all feasible edges matched by the Relaxed condition. Note that all the edges have at least one matching transition-centric
option for the Relaxed edge-matching condition. Figure 5b depicts the edges that do not have a compatible transition-centric
option for the Constrained edge-matching condition.

Fig. 6: Trajectory executed by the robot using LTL-Transfer to achieve the novel task specification φtest =
Fworkbench ∧ Fgrass ∧ Faxe.



TABLE I: Test Tasks Executed on the Robot

LTL Task Specification Type of Task Results

0. Fa navigation success
1. Fa ∧ Fb navigation success
2. Fa ∧ Fb ∧ Fc navigation success
3. Fa ∧ Fb ∧ Fs navigation success
4. Fa ∧ Fb ∧ Fk navigation success
5. Fa ∧ Fb ∧ Fc ∧ Fd navigation success
6. Fa ∧ Fb ∧ Fc ∧ Fs navigation success
7. Fa ∧ Fb ∧ Fc ∧ Fk navigation success
8. Fa ∧ Fb ∧ Fc ∧ Fk ∧ Fs navigation success
9. F(b ∧ F(a ∧ F(c ∧ Fd)))) navigation success
10. F(s ∧ Fa) fetch and deliver success
11. F(s ∧ Fb) fetch and deliver success
12. F(a ∧ Fb) navigation success
13. F(b ∧ Fa) navigation success
14. F(a ∧ F(s ∧ Fc)) fetch and deliver success
15. F(b ∧ F(s ∧ Fc)) fetch and deliver success
16. F(s ∧ F(a ∧ Fc)) fetch and deliver success
17. F(a ∧ F(b ∧ Fc)) navigation success
18. F(s ∧ F(a ∧ F(k ∧ Fa)))) fetch and deliver success
19. F(a ∧ F(b ∧ F(c ∧ Fd)))) navigation success
20. F(s ∧ XFa) fetch and deliver success
21. F(b ∧ XFs) navigation success
22. F(a ∧ XFb) navigation success
23. F(b ∧ XFa) navigation success
24. F(a ∧ XF(b ∧ XFc)) navigation success
25. F(a ∧ XF(s ∧ XFb)) fetch and deliver success
26. F(b ∧ XF(s ∧ XFa)) fetch and deliver success
27. F(s ∧ XF(b ∧ XFa)) fetch and deliver success
28. F(k ∧ XFb) fetch and deliver success
29. F(k ∧ XFa) fetch and deliver success
30. ¬aUs ∧ Fa fetch and deliver success
31. ¬bUa ∧ Fb navigation success
32. ¬aUb ∧ Fa navigation success
33. bUa ∧ ¬cUb ∧ Fc navigation success
34. bUk ∧ Fb fetch and deliver success
35. ¬bUc ∧ Fb navigation success
36. ¬aUs ∧ ¬bUa ∧ Fb fetch and deliver success
37. ¬sUa ∧ ¬bUs ∧ Fb fetch and deliver success
38. ¬bUa ∧ ¬sUb ∧ Fs navigation success
39. ¬aUb ∧ ¬sUa ∧ Fs navigation success
40. Fa ∧ F(b ∧ Fc) navigation success
41. Fa ∧ ¬cUb ∧ Fc navigation success
42. F(a ∧ Fb) ∧ ¬cUa ∧ Fc navigation success
43. Fa ∧ F(b ∧ XFc) navigation success
44. F(a ∧ Fb) ∧ ¬cUb ∧ Fc navigation success
45. F(b ∧ Fa) ∧ ¬cUb ∧ Fc navigation success
46. Fc ∧ (¬sUa ∧ Fs) navigation success
47. Fc ∧ (¬aUs ∧ Fa) navigation success
48. Fc ∧ (¬sUb ∧ Fs) navigation success
49. Fc ∧ (¬bUs ∧ Fb) navigation success


	LPOPL
	Example LTL Formulas
	Additional Experimental Results
	Selected Solution Trajectories in Simulation
	Robot Demonstration
	References

